BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 26477943)

  • 1. Robust orthogonal recombination system for versatile genomic elements rearrangement in yeast Saccharomyces cerevisiae.
    Lin Q; Qi H; Wu Y; Yuan Y
    Sci Rep; 2015 Oct; 5():15249. PubMed ID: 26477943
    [TBL] [Abstract][Full Text] [Related]  

  • 2. L-SCRaMbLE as a tool for light-controlled Cre-mediated recombination in yeast.
    Hochrein L; Mitchell LA; Schulz K; Messerschmidt K; Mueller-Roeber B
    Nat Commun; 2018 May; 9(1):1931. PubMed ID: 29789561
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Systematic dissection of key factors governing recombination outcomes by GCE-SCRaMbLE.
    Zhang H; Fu X; Gong X; Wang Y; Zhang H; Zhao Y; Shen Y
    Nat Commun; 2022 Oct; 13(1):5836. PubMed ID: 36192484
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modifying yeast artificial chromosomes to generate Cre/LoxP and FLP/FRT site-specific deletions and inversions.
    Loots GG
    Methods Mol Biol; 2006; 349():75-84. PubMed ID: 17071975
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cre/loxP-mediated in vivo excision of large segments from yeast genome and their amplification based on the 2microm plasmid-derived system.
    Yoon YG; Pósfai G; Szybalski W; Kim SC
    Gene; 1998 Nov; 223(1-2):67-76. PubMed ID: 9858689
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of cryptic lox sites in the yeast genome by selection for Cre-mediated chromosome translocations that confer multiple drug resistance.
    Sauer B
    J Mol Biol; 1992 Feb; 223(4):911-28. PubMed ID: 1554399
    [TBL] [Abstract][Full Text] [Related]  

  • 7. SCRaMbLE-in: A Fast and Efficient Method to Diversify and Improve the Yields of Heterologous Pathways in Synthetic Yeast.
    Swidah R; Auxillos J; Liu W; Jones S; Chan TF; Dai J; Cai Y
    Methods Mol Biol; 2020; 2205():305-327. PubMed ID: 32809206
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Orthogonal LoxPsym sites allow multiplexed site-specific recombination in prokaryotic and eukaryotic hosts.
    Cautereels C; Smets J; De Saeger J; Cool L; Zhu Y; Zimmermann A; Steensels J; Gorkovskiy A; Jacobs TB; Verstrepen KJ
    Nat Commun; 2024 Feb; 15(1):1113. PubMed ID: 38326330
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The 2 micron plasmid of Saccharomyces cerevisiae: a miniaturized selfish genome with optimized functional competence.
    Chan KM; Liu YT; Ma CH; Jayaram M; Sau S
    Plasmid; 2013 Jul; 70(1):2-17. PubMed ID: 23541845
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recombination between retrotransposons as a source of chromosome rearrangements in the yeast Saccharomyces cerevisiae.
    Mieczkowski PA; Lemoine FJ; Petes TD
    DNA Repair (Amst); 2006 Sep; 5(9-10):1010-20. PubMed ID: 16798113
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Targeted insertion of exogenous DNA into the eukaryotic genome by the Cre recombinase.
    Sauer B; Henderson N
    New Biol; 1990 May; 2(5):441-9. PubMed ID: 2288914
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Recycling selectable markers in yeast.
    Sauer B
    Biotechniques; 1994 Jun; 16(6):1086-8. PubMed ID: 8074874
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Precise control of SCRaMbLE in synthetic haploid and diploid yeast.
    Jia B; Wu Y; Li BZ; Mitchell LA; Liu H; Pan S; Wang J; Zhang HR; Jia N; Li B; Shen M; Xie ZX; Liu D; Cao YX; Li X; Zhou X; Qi H; Boeke JD; Yuan YJ
    Nat Commun; 2018 May; 9(1):1933. PubMed ID: 29789567
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparative kinetic analysis of FLP and cre recombinases: mathematical models for DNA binding and recombination.
    Ringrose L; Lounnas V; Ehrlich L; Buchholz F; Wade R; Stewart AF
    J Mol Biol; 1998 Nov; 284(2):363-84. PubMed ID: 9813124
    [TBL] [Abstract][Full Text] [Related]  

  • 15. DNA replication meets genetic exchange: chromosomal damage and its repair by homologous recombination.
    Kuzminov A
    Proc Natl Acad Sci U S A; 2001 Jul; 98(15):8461-8. PubMed ID: 11459990
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Heterozygous diploid and interspecies SCRaMbLEing.
    Shen MJ; Wu Y; Yang K; Li Y; Xu H; Zhang H; Li BZ; Li X; Xiao WH; Zhou X; Mitchell LA; Bader JS; Yuan Y; Boeke JD
    Nat Commun; 2018 May; 9(1):1934. PubMed ID: 29789590
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Vika/vox, a novel efficient and specific Cre/loxP-like site-specific recombination system.
    Karimova M; Abi-Ghanem J; Berger N; Surendranath V; Pisabarro MT; Buchholz F
    Nucleic Acids Res; 2013 Jan; 41(2):e37. PubMed ID: 23143104
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A 2-microm DNA-based marker recycling system for multiple gene disruption in the yeast Saccharomyces cerevisiae.
    Storici F; Coglievina M; Bruschi CV
    Yeast; 1999 Mar; 15(4):271-83. PubMed ID: 10206187
    [TBL] [Abstract][Full Text] [Related]  

  • 19. SCRaMbLE generates evolved yeasts with increased alkali tolerance.
    Ma L; Li Y; Chen X; Ding M; Wu Y; Yuan YJ
    Microb Cell Fact; 2019 Mar; 18(1):52. PubMed ID: 30857530
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recombinational DNA double-strand breaks in mice precede synapsis.
    Mahadevaiah SK; Turner JM; Baudat F; Rogakou EP; de Boer P; Blanco-Rodríguez J; Jasin M; Keeney S; Bonner WM; Burgoyne PS
    Nat Genet; 2001 Mar; 27(3):271-6. PubMed ID: 11242108
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.