These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 26478013)

  • 1. Minimizing biases associated with tracking analysis of submicron particles in heterogeneous biological fluids.
    Wang YY; Nunn KL; Harit D; McKinley SA; Lai SK
    J Control Release; 2015 Dec; 220(Pt A):37-43. PubMed ID: 26478013
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nanoparticle diffusion within intestinal mucus: Three-dimensional response analysis dissecting the impact of particle surface charge, size and heterogeneity across polyelectrolyte, pegylated and viral particles.
    Abdulkarim M; Agulló N; Cattoz B; Griffiths P; Bernkop-Schnürch A; Borros SG; Gumbleton M
    Eur J Pharm Biopharm; 2015 Nov; 97(Pt A):230-8. PubMed ID: 25661585
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interactions of microbicide nanoparticles with a simulated vaginal fluid.
    das Neves J; Rocha CM; Gonçalves MP; Carrier RL; Amiji M; Bahia MF; Sarmento B
    Mol Pharm; 2012 Nov; 9(11):3347-56. PubMed ID: 23003680
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Real-time multiple particle tracking of gene nanocarriers in complex biological environments.
    Lai SK; Hanes J
    Methods Mol Biol; 2008; 434():81-97. PubMed ID: 18470640
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Barrier properties of gastrointestinal mucus to nanoparticle transport.
    Crater JS; Carrier RL
    Macromol Biosci; 2010 Dec; 10(12):1473-83. PubMed ID: 20857389
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Size-Limited Penetration of Nanoparticles into Porcine Respiratory Mucus after Aerosol Deposition.
    Murgia X; Pawelzyk P; Schaefer UF; Wagner C; Willenbacher N; Lehr CM
    Biomacromolecules; 2016 Apr; 17(4):1536-42. PubMed ID: 26957140
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rapid transport of large polymeric nanoparticles in fresh undiluted human mucus.
    Lai SK; O'Hanlon DE; Harrold S; Man ST; Wang YY; Cone R; Hanes J
    Proc Natl Acad Sci U S A; 2007 Jan; 104(5):1482-7. PubMed ID: 17244708
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Size selectivity of intestinal mucus to diffusing particulates is dependent on surface chemistry and exposure to lipids.
    Yildiz HM; McKelvey CA; Marsac PJ; Carrier RL
    J Drug Target; 2015; 23(7-8):768-74. PubMed ID: 26453172
    [TBL] [Abstract][Full Text] [Related]  

  • 9. "Mucus-on-Chip": A new tool to study the dynamic penetration of nanoparticulate drug carriers into mucus.
    Jia Z; Guo Z; Yang CT; Prestidge C; Thierry B
    Int J Pharm; 2021 Apr; 598():120391. PubMed ID: 33621642
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Methods to determine the interactions of micro- and nanoparticles with mucus.
    Grießinger J; Dünnhaupt S; Cattoz B; Griffiths P; Oh S; Borrós i Gómez S; Wilcox M; Pearson J; Gumbleton M; Abdulkarim M; Pereira de Sousa I; Bernkop-Schnürch A
    Eur J Pharm Biopharm; 2015 Oct; 96():464-76. PubMed ID: 25641005
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Particle tracking in drug and gene delivery research: State-of-the-art applications and methods.
    Schuster BS; Ensign LM; Allan DB; Suk JS; Hanes J
    Adv Drug Deliv Rev; 2015 Aug; 91():70-91. PubMed ID: 25858664
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Three-dimensional real-time tracking of nanoparticles at an oil-water interface.
    Du K; Liddle JA; Berglund AJ
    Langmuir; 2012 Jun; 28(25):9181-8. PubMed ID: 22667449
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Real-time intracellular transport of gene nanocarriers studied by multiple particle tracking.
    Suh J; Wirtz D; Hanes J
    Biotechnol Prog; 2004; 20(2):598-602. PubMed ID: 15059007
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Convolutional neural networks automate detection for tracking of submicron-scale particles in 2D and 3D.
    Newby JM; Schaefer AM; Lee PT; Forest MG; Lai SK
    Proc Natl Acad Sci U S A; 2018 Sep; 115(36):9026-9031. PubMed ID: 30135100
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hindered nanoparticle diffusion and void accessibility in a three-dimensional porous medium.
    Skaug MJ; Wang L; Ding Y; Schwartz DK
    ACS Nano; 2015 Feb; 9(2):2148-56. PubMed ID: 25647084
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mucus permeating thiomer nanoparticles.
    Köllner S; Dünnhaupt S; Waldner C; Hauptstein S; Pereira de Sousa I; Bernkop-Schnürch A
    Eur J Pharm Biopharm; 2015 Nov; 97(Pt A):265-72. PubMed ID: 25603199
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Predicting first traversal times for virions and nanoparticles in mucus with slowed diffusion.
    Erickson AM; Henry BI; Murray JM; Klasse PJ; Angstmann CN
    Biophys J; 2015 Jul; 109(1):164-72. PubMed ID: 26153713
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development and in vivo evaluation of papain-functionalized nanoparticles.
    Müller C; Perera G; König V; Bernkop-Schnürch A
    Eur J Pharm Biopharm; 2014 May; 87(1):125-31. PubMed ID: 24373995
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development and in vitro evaluation of slippery nanoparticles for enhanced diffusion through native mucus.
    Laffleur F; Hintzen F; Shahnaz G; Rahmat D; Leithner K; Bernkop-Schnürch A
    Nanomedicine (Lond); 2014 Mar; 9(3):387-96. PubMed ID: 23611618
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Machine learning-informed predictions of nanoparticle mobility and fate in the mucus barrier.
    Kaler L; Joyner K; Duncan GA
    APL Bioeng; 2022 Jun; 6(2):026103. PubMed ID: 35757278
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.