These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
141 related articles for article (PubMed ID: 26478298)
1. Time-dependent rheological behaviour of bacterial cellulose hydrogel. Gao X; Shi Z; Kuśmierczyk P; Liu C; Yang G; Sevostianov I; Silberschmidt VV Mater Sci Eng C Mater Biol Appl; 2016 Jan; 58():153-9. PubMed ID: 26478298 [TBL] [Abstract][Full Text] [Related]
2. Through-thickness stress relaxation in bacterial cellulose hydrogel. Gao X; Kuśmierczyk P; Shi Z; Liu C; Yang G; Sevostianov I; Silberschmidt VV J Mech Behav Biomed Mater; 2016 Jun; 59():90-98. PubMed ID: 26749210 [TBL] [Abstract][Full Text] [Related]
3. Effect of microstructure on anomalous strain-rate-dependent behaviour of bacterial cellulose hydrogel. Gao X; Shi Z; Lau A; Liu C; Yang G; Silberschmidt VV Mater Sci Eng C Mater Biol Appl; 2016 May; 62():130-6. PubMed ID: 26952406 [TBL] [Abstract][Full Text] [Related]
4. Investigation into the structural, morphological, mechanical and thermal behaviour of bacterial cellulose after a two-step purification process. Gea S; Reynolds CT; Roohpour N; Wirjosentono B; Soykeabkaew N; Bilotti E; Peijs T Bioresour Technol; 2011 Oct; 102(19):9105-10. PubMed ID: 21835613 [TBL] [Abstract][Full Text] [Related]
5. Preparation and characterization of reinforced papers using nano bacterial cellulose. Tabarsa T; Sheykhnazari S; Ashori A; Mashkour M; Khazaeian A Int J Biol Macromol; 2017 Aug; 101():334-340. PubMed ID: 28341173 [TBL] [Abstract][Full Text] [Related]
6. Development of bacterial cellulose/chitosan based semi-interpenetrating hydrogels with improved mechanical and antibacterial properties. Wahid F; Hu XH; Chu LQ; Jia SR; Xie YY; Zhong C Int J Biol Macromol; 2019 Feb; 122():380-387. PubMed ID: 30342151 [TBL] [Abstract][Full Text] [Related]
7. Metabolic flux analysis of Gluconacetobacter xylinus for bacterial cellulose production. Zhong C; Zhang GC; Liu M; Zheng XT; Han PP; Jia SR Appl Microbiol Biotechnol; 2013 Jul; 97(14):6189-99. PubMed ID: 23640364 [TBL] [Abstract][Full Text] [Related]
8. Vitamin C enhances bacterial cellulose production in Gluconacetobacter xylinus. Keshk SM Carbohydr Polym; 2014 Jan; 99():98-100. PubMed ID: 24274484 [TBL] [Abstract][Full Text] [Related]
9. A uniaxially oriented nanofibrous cellulose scaffold from pellicles produced by Gluconacetobacter xylinus in dissolved oxygen culture. Nagashima A; Tsuji T; Kondo T Carbohydr Polym; 2016 Jan; 135():215-24. PubMed ID: 26453871 [TBL] [Abstract][Full Text] [Related]
10. Conformational and rheological properties of bacterial cellulose sulfate. Song S; Liu X; Ding L; Abubaker MA; Zhang J; Huang Y; Yang S; Fan Z Int J Biol Macromol; 2021 Jul; 183():2326-2336. PubMed ID: 34089760 [TBL] [Abstract][Full Text] [Related]
11. Thymol enriched bacterial cellulose hydrogel as effective material for third degree burn wound repair. Jiji S; Udhayakumar S; Rose C; Muralidharan C; Kadirvelu K Int J Biol Macromol; 2019 Feb; 122():452-460. PubMed ID: 30385344 [TBL] [Abstract][Full Text] [Related]
12. [Preparation for and study on the property of medical bacterial cellulose]. Li Z; Yan Z; Chen S; Wang H Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2012 Feb; 29(1):164-9. PubMed ID: 22404031 [TBL] [Abstract][Full Text] [Related]
13. Investigation on artificial blood vessels prepared from bacterial cellulose. Zang S; Zhang R; Chen H; Lu Y; Zhou J; Chang X; Qiu G; Wu Z; Yang G Mater Sci Eng C Mater Biol Appl; 2015 Jan; 46():111-7. PubMed ID: 25491966 [TBL] [Abstract][Full Text] [Related]
14. Production of Hollow Bacterial Cellulose Microspheres Using Microfluidics to Form an Injectable Porous Scaffold for Wound Healing. Yu J; Huang TR; Lim ZH; Luo R; Pasula RR; Liao LD; Lim S; Chen CH Adv Healthc Mater; 2016 Dec; 5(23):2983-2992. PubMed ID: 27805793 [TBL] [Abstract][Full Text] [Related]
15. Bacterial cellulose: long-term biocompatibility studies. Pértile RA; Moreira S; Gil da Costa RM; Correia A; Guãrdao L; Gartner F; Vilanova M; Gama M J Biomater Sci Polym Ed; 2012; 23(10):1339-54. PubMed ID: 21722421 [TBL] [Abstract][Full Text] [Related]
16. Bacterial cellulose production by Gluconacetobacter xylinus by employing alternative culture media. Jozala AF; Pértile RA; dos Santos CA; de Carvalho Santos-Ebinuma V; Seckler MM; Gama FM; Pessoa A Appl Microbiol Biotechnol; 2015 Feb; 99(3):1181-90. PubMed ID: 25472434 [TBL] [Abstract][Full Text] [Related]
17. Evaluation of usefulness of 2DCorr technique in assessing physicochemical properties of bacterial cellulose. Drozd R; Rakoczy R; Konopacki M; Frąckowiak A; Fijałkowski K Carbohydr Polym; 2017 Apr; 161():208-218. PubMed ID: 28189230 [TBL] [Abstract][Full Text] [Related]
18. Improvement production of bacterial cellulose by semi-continuous process in molasses medium. Cakar F; Ozer I; Aytekin AÖ; Sahin F Carbohydr Polym; 2014 Jun; 106():7-13. PubMed ID: 24721044 [TBL] [Abstract][Full Text] [Related]
19. Bacterial cellulose-based re-swellable hydrogel: Facile preparation and its potential application as colorimetric sensor of sweat pH and glucose. Siripongpreda T; Somchob B; Rodthongkum N; Hoven VP Carbohydr Polym; 2021 Mar; 256():117506. PubMed ID: 33483028 [TBL] [Abstract][Full Text] [Related]
20. Intelligent optofluidic analysis for ultrafast single bacterium profiling of cellulose production and morphology. Yu J; Sun G; Lin NW; Vadanan SV; Lim S; Chen CH Lab Chip; 2020 Feb; 20(3):626-633. PubMed ID: 31919490 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]