BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

348 related articles for article (PubMed ID: 26478335)

  • 1. Preparation and characterization of a novel sodium alginate incorporated self-assembled Fmoc-FF composite hydrogel.
    Gong X; Branford-White C; Tao L; Li S; Quan J; Nie H; Zhu L
    Mater Sci Eng C Mater Biol Appl; 2016 Jan; 58():478-86. PubMed ID: 26478335
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The calcium silicate/alginate composite: preparation and evaluation of its behavior as bioactive injectable hydrogels.
    Han Y; Zeng Q; Li H; Chang J
    Acta Biomater; 2013 Nov; 9(11):9107-17. PubMed ID: 23796407
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effect of calcium chloride concentration on alginate/Fmoc-diphenylalanine hydrogel networks.
    Çelik E; Bayram C; Akçapınar R; Türk M; Denkbaş EB
    Mater Sci Eng C Mater Biol Appl; 2016 Sep; 66():221-229. PubMed ID: 27207058
    [TBL] [Abstract][Full Text] [Related]  

  • 4. De novo design of self-assembly hydrogels based on Fmoc-diphenylalanine providing drug release.
    Li X; Zhang H; Liu L; Cao C; Wei P; Yi X; Zhou Y; Lv Q; Zhou D; Yi T
    J Mater Chem B; 2021 Oct; 9(41):8686-8693. PubMed ID: 34617098
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Preparation and swelling properties of pH-sensitive composite hydrogel beads based on chitosan-g-poly (acrylic acid)/vermiculite and sodium alginate for diclofenac controlled release.
    Wang Q; Xie X; Zhang X; Zhang J; Wang A
    Int J Biol Macromol; 2010 Apr; 46(3):356-62. PubMed ID: 20096301
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Self-Assembled Peptide-Based Hydrogels as Scaffolds for Proliferation and Multi-Differentiation of Mesenchymal Stem Cells.
    Wang YL; Lin SP; Nelli SR; Zhan FK; Cheng H; Lai TS; Yeh MY; Lin HC; Hung SC
    Macromol Biosci; 2017 Apr; 17(4):. PubMed ID: 27792283
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of halloysite nanotubes on physical properties and cytocompatibility of alginate composite hydrogels.
    Huang B; Liu M; Long Z; Shen Y; Zhou C
    Mater Sci Eng C Mater Biol Appl; 2017 Jan; 70(Pt 1):303-310. PubMed ID: 27770895
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Formation of macroporous self-assembled hydrogels through cryogelation of Fmoc-Phe-Phe.
    Berillo D; Mattiasson B; Galaev IY; Kirsebom H
    J Colloid Interface Sci; 2012 Feb; 368(1):226-30. PubMed ID: 22129632
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of alginate-brushite in-situ hydrogel composites.
    Dabiri SMH; Lagazzo A; Barberis F; Farokhi M; Finochio E; Pastorino L
    Mater Sci Eng C Mater Biol Appl; 2016 Oct; 67():502-510. PubMed ID: 27287148
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of microcavitary alginate hydrogel with different pore sizes on chondrocyte culture for cartilage tissue engineering.
    Zeng L; Yao Y; Wang DA; Chen X
    Mater Sci Eng C Mater Biol Appl; 2014 Jan; 34():168-75. PubMed ID: 24268246
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of C-terminal modification on the self-assembly and hydrogelation of fluorinated Fmoc-Phe derivatives.
    Ryan DM; Doran TM; Anderson SB; Nilsson BL
    Langmuir; 2011 Apr; 27(7):4029-39. PubMed ID: 21401045
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Preparation and characteristics of sodium alginate/Na(+)rectorite-g-itaconic acid/acrylamide hydrogel films.
    Yang L; Ma X; Guo N; Zhang Y
    Carbohydr Polym; 2014 May; 105():351-8. PubMed ID: 24708990
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of glycine substitution on Fmoc-diphenylalanine self-assembly and gelation properties.
    Tang C; Ulijn RV; Saiani A
    Langmuir; 2011 Dec; 27(23):14438-49. PubMed ID: 21995651
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hydrogelation and self-assembly of Fmoc-tripeptides: unexpected influence of sequence on self-assembled fibril structure, and hydrogel modulus and anisotropy.
    Cheng G; Castelletto V; Moulton CM; Newby GE; Hamley IW
    Langmuir; 2010 Apr; 26(7):4990-8. PubMed ID: 20073495
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An in situ formed biodegradable hydrogel for reconstruction of the corneal endothelium.
    Liang Y; Liu W; Han B; Yang C; Ma Q; Song F; Bi Q
    Colloids Surf B Biointerfaces; 2011 Jan; 82(1):1-7. PubMed ID: 20832263
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthesis of photoresponsive hybrid alginate hydrogel with photo-controlled release behavior.
    Chiang CY; Chu CC
    Carbohydr Polym; 2015 Mar; 119():18-25. PubMed ID: 25563940
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Versatile click alginate hydrogels crosslinked via tetrazine-norbornene chemistry.
    Desai RM; Koshy ST; Hilderbrand SA; Mooney DJ; Joshi NS
    Biomaterials; 2015 May; 50():30-7. PubMed ID: 25736493
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nanocellulose-alginate hydrogel for cell encapsulation.
    Park M; Lee D; Hyun J
    Carbohydr Polym; 2015 Feb; 116():223-8. PubMed ID: 25458293
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ionically cross-linked carrageenan-alginate hydrogel beads.
    Mohamadnia Z; Zohuriaan-Mehr MJ; Kabiri K; Jamshidi A; Mobedi H
    J Biomater Sci Polym Ed; 2008; 19(1):47-59. PubMed ID: 18177553
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In situ thiolated alginate hydrogel: Instant formation and its application in hemostasis.
    Xu G; Cheng L; Zhang Q; Sun Y; Chen C; Xu H; Chai Y; Lang M
    J Biomater Appl; 2016 Nov; 31(5):721-729. PubMed ID: 27485953
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.