These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
323 related articles for article (PubMed ID: 26478349)
1. Thermally processed polymeric microparticles for year-long delivery of dexamethasone. Goodfriend AC; Welch TR; Nguyen KT; Johnson RF; Sebastian V; Reddy SV; Forbess J; Nugent A Mater Sci Eng C Mater Biol Appl; 2016 Jan; 58():595-600. PubMed ID: 26478349 [TBL] [Abstract][Full Text] [Related]
2. Prediction of dexamethasone release from PLGA microspheres prepared with polymer blends using a design of experiment approach. Gu B; Burgess DJ Int J Pharm; 2015 Nov; 495(1):393-403. PubMed ID: 26325309 [TBL] [Abstract][Full Text] [Related]
3. Development of poly (lactic-co-glycolic acid) (PLGA) based implants using hot melt extrusion (HME) for sustained release of drugs: The impacts of PLGA's material characteristics. Yang F; Stahnke R; Lawal K; Mahnen C; Duffy P; Xu S; Durig T Int J Pharm; 2024 Sep; 663():124556. PubMed ID: 39122196 [TBL] [Abstract][Full Text] [Related]
4. Towards a better understanding of the different release phases from PLGA microparticles: Dexamethasone-loaded systems. Gasmi H; Siepmann F; Hamoudi MC; Danede F; Verin J; Willart JF; Siepmann J Int J Pharm; 2016 Nov; 514(1):189-199. PubMed ID: 27543353 [TBL] [Abstract][Full Text] [Related]
5. Microspheres prepared with PLGA blends for delivery of dexamethasone for implantable medical devices. Wang Y; Gu B; Burgess DJ Pharm Res; 2014 Feb; 31(2):373-81. PubMed ID: 23949251 [TBL] [Abstract][Full Text] [Related]
6. Evaluation of in vivo-in vitro release of dexamethasone from PLGA microspheres. Zolnik BS; Burgess DJ J Control Release; 2008 Apr; 127(2):137-45. PubMed ID: 18282629 [TBL] [Abstract][Full Text] [Related]
7. PLGA-PEG microspheres of teverelix: influence of polymer type on microsphere characteristics and on teverelix in vitro release. Mallardé D; Boutignon F; Moine F; Barré E; David S; Touchet H; Ferruti P; Deghenghi R Int J Pharm; 2003 Aug; 261(1-2):69-80. PubMed ID: 12878396 [TBL] [Abstract][Full Text] [Related]
8. Protein instability in poly(lactic-co-glycolic acid) microparticles. van de Weert M; Hennink WE; Jiskoot W Pharm Res; 2000 Oct; 17(10):1159-67. PubMed ID: 11145219 [TBL] [Abstract][Full Text] [Related]
9. A comparative study of PLGA microparticle properties loaded with micronized, nanosized or dissolved drug. Zhang C; Bodmeier R Int J Pharm; 2022 Nov; 628():122313. PubMed ID: 36272513 [TBL] [Abstract][Full Text] [Related]
10. Preparation and characterization of gelatin surface modified PLGA microspheres. Tsung MJ; Burgess DJ AAPS PharmSci; 2001; 3(2):E11. PubMed ID: 11741261 [TBL] [Abstract][Full Text] [Related]
11. Thermal behavior and stability of biodegradable spray-dried microparticles containing triamcinolone. da Silva AA; de Matos JR; Formariz TP; Rossanezi G; Scarpa MV; do Egito ES; de Oliveira AG Int J Pharm; 2009 Feb; 368(1-2):45-55. PubMed ID: 18992313 [TBL] [Abstract][Full Text] [Related]
12. Protein release microparticles based on the blend of poly(D,L-lactic-co-glycolic acid) and oligo-ethylene glycol grafted poly(L-lactide). Cho KY; Choi SH; Kim CH; Nam YS; Park TG; Park JK J Control Release; 2001 Oct; 76(3):275-84. PubMed ID: 11578742 [TBL] [Abstract][Full Text] [Related]
13. Modulating protein release profiles by incorporating hyaluronic acid into PLGA microparticles Via a spray dryer equipped with a 3-fluid nozzle. Wan F; Maltesen MJ; Andersen SK; Bjerregaard S; Baldursdottir SG; Foged C; Rantanen J; Yang M Pharm Res; 2014 Nov; 31(11):2940-51. PubMed ID: 24867422 [TBL] [Abstract][Full Text] [Related]
14. Surface-functionalized, pH-responsive poly(lactic-co-glycolic acid)-based microparticles for intranasal vaccine delivery: Effect of surface modification with chitosan and mannan. Li Z; Xiong F; He J; Dai X; Wang G Eur J Pharm Biopharm; 2016 Dec; 109():24-34. PubMed ID: 27569030 [TBL] [Abstract][Full Text] [Related]
15. Porous PLGA microparticles prepared with nanosized/micronized sugar particles as porogens. Zhang C; Bodmeier R Int J Pharm; 2024 Jul; 660():124329. PubMed ID: 38857662 [TBL] [Abstract][Full Text] [Related]
16. Biodegradable microparticles for sustained release of a new GnRH antagonist--part I: Screening commercial PLGA and formulation technologies. Schwach G; Oudry N; Delhomme S; Lück M; Lindner H; Gurny R Eur J Pharm Biopharm; 2003 Nov; 56(3):327-36. PubMed ID: 14602174 [TBL] [Abstract][Full Text] [Related]
17. Size effect of PLGA spheres on drug loading efficiency and release profiles. Dawes GJ; Fratila-Apachitei LE; Mulia K; Apachitei I; Witkamp GJ; Duszczyk J J Mater Sci Mater Med; 2009 May; 20(5):1089-94. PubMed ID: 19160026 [TBL] [Abstract][Full Text] [Related]
18. Formulations for modulation of protein release from large-size PLGA microparticles for tissue engineering. Qodratnama R; Serino LP; Cox HC; Qutachi O; White LJ Mater Sci Eng C Mater Biol Appl; 2015 Feb; 47():230-6. PubMed ID: 25492193 [TBL] [Abstract][Full Text] [Related]
19. Modification of biodegradable poly(malate) and poly(lactic-co-glycolic acid) microparticles with low molecular polyethylene glycol. Yoncheva K; Lambov N; Miloshev S Drug Dev Ind Pharm; 2009 Apr; 35(4):449-54. PubMed ID: 19288298 [TBL] [Abstract][Full Text] [Related]
20. Critical solvent properties affecting the particle formation process and characteristics of celecoxib-loaded plga microparticles via spray-drying. Wan F; Bohr A; Maltesen MJ; Bjerregaard S; Foged C; Rantanen J; Yang M Pharm Res; 2013 Apr; 30(4):1065-76. PubMed ID: 23263784 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]