BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

298 related articles for article (PubMed ID: 26478487)

  • 1. Pulse Double-Resonance EPR Techniques for the Study of Metallobiomolecules.
    Cox N; Nalepa A; Pandelia ME; Lubitz W; Savitsky A
    Methods Enzymol; 2015; 563():211-49. PubMed ID: 26478487
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-field EPR on membrane proteins - crossing the gap to NMR.
    Möbius K; Lubitz W; Savitsky A
    Prog Nucl Magn Reson Spectrosc; 2013 Nov; 75():1-49. PubMed ID: 24160760
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Simultaneous acquisition of pulse EPR orientation selective spectra.
    Kaminker I; Florent M; Epel B; Goldfarb D
    J Magn Reson; 2011 Jan; 208(1):95-102. PubMed ID: 21075028
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 230/115 GHz Electron Paramagnetic Resonance/Double Electron-Electron Resonance Spectroscopy.
    Cho FH; Stepanov V; Abeywardana C; Takahashi S
    Methods Enzymol; 2015; 563():95-118. PubMed ID: 26478483
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The strength of EPR and ENDOR techniques in revealing structure-function relationships in metalloproteins.
    Van Doorslaer S; Vinck E
    Phys Chem Chem Phys; 2007 Sep; 9(33):4620-38. PubMed ID: 17700864
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mapping the Structure of Metalloproteins with RIDME.
    Astashkin AV
    Methods Enzymol; 2015; 563():251-84. PubMed ID: 26478488
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A multi-frequency pulse EPR and ENDOR approach to study strongly coupled nuclei in frozen solutions of high-spin ferric heme proteins.
    Fittipaldi M; García-Rubio I; Trandafir F; Gromov I; Schweiger A; Bouwen A; Van Doorslaer S
    J Phys Chem B; 2008 Mar; 112(12):3859-70. PubMed ID: 18321089
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-field ELDOR-detected NMR study of a nitroxide radical in disordered solids: towards characterization of heterogeneity of microenvironments in spin-labeled systems.
    Nalepa A; Möbius K; Lubitz W; Savitsky A
    J Magn Reson; 2014 May; 242():203-13. PubMed ID: 24685717
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Correlating nuclear frequencies by two-dimensional ELDOR-detected NMR spectroscopy.
    Kaminker I; Wilson TD; Savelieff MG; Hovav Y; Zimmermann H; Lu Y; Goldfarb D
    J Magn Reson; 2014 Mar; 240():77-89. PubMed ID: 24530956
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Combining high-field EPR with site-directed spin labeling reveals unique information on proteins in action.
    Möbius K; Savitsky A; Wegener C; Plato M; Fuchs M; Schnegg A; Dubinskii AA; Grishin YA; Grigor'ev IA; Kühn M; Duché D; Zimmermann H; Steinhoff HJ
    Magn Reson Chem; 2005 Nov; 43 Spec no.():S4-S19. PubMed ID: 16235212
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pulsed EPR and NMR spectroscopy of paramagnetic iron porphyrinates and related iron macrocycles: how to understand patterns of spin delocalization and recognize macrocycle radicals.
    Walker FA
    Inorg Chem; 2003 Jul; 42(15):4526-44. PubMed ID: 12870942
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multifrequency pulsed electron paramagnetic resonance on metalloproteins.
    Lyubenova S; Maly T; Zwicker K; Brandt U; Ludwig B; Prisner T
    Acc Chem Res; 2010 Feb; 43(2):181-9. PubMed ID: 19842617
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Studying lipid-protein interactions with electron paramagnetic resonance spectroscopy of spin-labeled lipids.
    Páli T; Kóta Z
    Methods Mol Biol; 2013; 974():297-328. PubMed ID: 23404282
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A triple resonance hyperfine sublevel correlation experiment for assignment of electron-nuclear double resonance lines.
    Potapov A; Epel B; Goldfarb D
    J Chem Phys; 2008 Feb; 128(5):052320. PubMed ID: 18266437
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pulsed EPR spectroscopy: biological applications.
    Prisner T; Rohrer M; MacMillan F
    Annu Rev Phys Chem; 2001; 52():279-313. PubMed ID: 11326067
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Water accessibility in a membrane-inserting peptide comparing Overhauser DNP and pulse EPR methods.
    Segawa TF; Doppelbauer M; Garbuio L; Doll A; Polyhach YO; Jeschke G
    J Chem Phys; 2016 May; 144(19):194201. PubMed ID: 27208942
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Theory of EPR lineshape in samples concentrated in paramagnetic spins: effect of enhanced internal magnetic field on high-field high-frequency (HFHF) EPR lineshape.
    Misra SK; Diehl S
    J Magn Reson; 2012 Jun; 219():53-60. PubMed ID: 22613039
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-field dipolar electron paramagnetic resonance (EPR) spectroscopy of nitroxide biradicals for determining three-dimensional structures of biomacromolecules in disordered solids.
    Savitsky A; Dubinskii AA; Zimmermann H; Lubitz W; Möbius K
    J Phys Chem B; 2011 Oct; 115(41):11950-63. PubMed ID: 21879744
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Methods and applications of site-directed spin labeling EPR spectroscopy.
    Klug CS; Feix JB
    Methods Cell Biol; 2008; 84():617-58. PubMed ID: 17964945
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Focus: Two-dimensional electron-electron double resonance and molecular motions: The challenge of higher frequencies.
    Franck JM; Chandrasekaran S; Dzikovski B; Dunnam CR; Freed JH
    J Chem Phys; 2015 Jun; 142(21):212302. PubMed ID: 26049420
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.