These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 26478490)

  • 41. Alternatives to the oxoferryl porphyrin cation radical as the proposed reactive intermediate of cytochrome P450: two-electron oxidized Fe(III) porphyrin derivatives.
    Watanabe Y
    J Biol Inorg Chem; 2001 Oct; 6(8):846-56. PubMed ID: 11713692
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Electron paramagnetic resonance spectroscopy of the heme domain of inducible nitric oxide synthase: binding of ligands at the arginine site induces changes in the heme ligation geometry.
    Salerno JC; Martasek P; Roman LJ; Masters BS
    Biochemistry; 1996 Jun; 35(24):7626-30. PubMed ID: 8672462
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Fast cytochrome bo from Escherichia coli binds two molecules of nitric oxide at CuB.
    Butler CS; Seward HE; Greenwood C; Thomson AJ
    Biochemistry; 1997 Dec; 36(51):16259-66. PubMed ID: 9405060
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Cytochrome P450 catalyzed nitric oxide synthesis: a theoretical study.
    Keserü GM; Volk B; Balogh GT
    J Biomol Struct Dyn; 2000 Feb; 17(4):759-67. PubMed ID: 10698112
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Structures of the siroheme- and Fe4S4-containing active center of sulfite reductase in different states of oxidation: heme activation via reduction-gated exogenous ligand exchange.
    Crane BR; Siegel LM; Getzoff ED
    Biochemistry; 1997 Oct; 36(40):12101-19. PubMed ID: 9315848
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Sulfoxidation mechanisms catalyzed by cytochrome P450 and horseradish peroxidase models: spin selection induced by the ligand.
    Kumar D; de Visser SP; Sharma PK; Hirao H; Shaik S
    Biochemistry; 2005 Jun; 44(22):8148-58. PubMed ID: 15924434
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Structural biology of heme monooxygenases.
    Poulos TL
    Biochem Biophys Res Commun; 2005 Dec; 338(1):337-45. PubMed ID: 16185651
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Pulsed electron paramagnetic resonance methods for macromolecular structure determination.
    Lakshmi KV; Brudvig GW
    Curr Opin Struct Biol; 2001 Oct; 11(5):523-31. PubMed ID: 11785751
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Crystallization, preliminary diffraction and electron paramagnetic resonance studies of a single crystal of cytochrome P450nor.
    Park SY; Shimizu H; Adachi S; Shiro Y; Iizuka T; Nakagawa A; Tanaka I; Shoun H; Hori H
    FEBS Lett; 1997 Jul; 412(2):346-50. PubMed ID: 9256249
    [TBL] [Abstract][Full Text] [Related]  

  • 50. C-H bond activation in heme proteins: the role of thiolate ligation in cytochrome P450.
    Green MT
    Curr Opin Chem Biol; 2009 Feb; 13(1):84-8. PubMed ID: 19345605
    [TBL] [Abstract][Full Text] [Related]  

  • 51.
    Field MJ; Oyala PH; Green MT
    J Am Chem Soc; 2022 Oct; 144(42):19272-19283. PubMed ID: 36240444
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The proximal hydrogen bond network modulates Bacillus subtilis nitric-oxide synthase electronic and structural properties.
    Brunel A; Wilson A; Henry L; Dorlet P; Santolini J
    J Biol Chem; 2011 Apr; 286(14):11997-2005. PubMed ID: 21310962
    [TBL] [Abstract][Full Text] [Related]  

  • 53. High pressure: a new tool to study P450 structure and function.
    Bancel F; Hoa GH; Anzenbacher P; Balny C; Lange R
    Methods Enzymol; 2002; 357():145-57. PubMed ID: 12424906
    [No Abstract]   [Full Text] [Related]  

  • 54. CW-EPR and ENDOR study of cytochrome c6 from Anabaena PCC 7119.
    García-Rubio I; Medina M; Cammack R; Alonso PJ; Martínez JI
    Biophys J; 2006 Sep; 91(6):2250-63. PubMed ID: 16798796
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Understanding heme proteins with hyperfine spectroscopy.
    Van Doorslaer S
    J Magn Reson; 2017 Jul; 280():79-88. PubMed ID: 28579104
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Cytochrome P450s: creating novel ligand sets.
    Seward HE; Girvan HM; Munro AW
    Dalton Trans; 2005 Nov; (21):3419-26. PubMed ID: 16234920
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Coupling of spin, substrate, and redox equilibria in cytochrome P450.
    Sligar SG
    Biochemistry; 1976 Nov; 15(24):5399-406. PubMed ID: 187215
    [No Abstract]   [Full Text] [Related]  

  • 58. [Methods for determining of cytochrome P450 isozymes functional activity].
    Kuzikov AV; Masamrekh RA; Archakov AI; Shumyantseva VV
    Biomed Khim; 2018 Mar; 64(2):149-168. PubMed ID: 29723145
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Linear electric field-induced shifts in electron paramagnetic resonance: a new method for study of the ligands of cytochrome P-450.
    Peisach J; Mims WB
    Proc Natl Acad Sci U S A; 1973 Oct; 70(10):2979-82. PubMed ID: 4355378
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Detection and quantitation of free cytochrome P-450 and cytochrome P-450 complexes by EPR spectroscopy.
    Orme-Johnson NR; Orme-Johnson WH
    Methods Enzymol; 1978; 52():252-7. PubMed ID: 209287
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.