These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 26478505)

  • 1. Electronic Structure and Ferromagnetism Modulation in Cu/Cu2O Interface: Impact of Interfacial Cu Vacancy and Its Diffusion.
    Li HB; Wang W; Xie X; Cheng Y; Zhang Z; Dong H; Zheng R; Wang WH; Lu F; Liu H
    Sci Rep; 2015 Oct; 5():15191. PubMed ID: 26478505
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The p-type conduction mechanism in Cu2O: a first principles study.
    Nolan M; Elliott SD
    Phys Chem Chem Phys; 2006 Dec; 8(45):5350-8. PubMed ID: 19810413
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Energetics and interdiffusion at the Cu/Ru(0001) interface: density functional calculations.
    Shin J; Vita A; Windu S; Choi JH; Lee SC; Lee JG
    J Nanosci Nanotechnol; 2011 Jul; 11(7):6589-93. PubMed ID: 22121762
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electronic structure and spectra of (Cu2O)(n)-H2O complexes.
    Petsalakis ID; Theodorakopoulos G; Whitten J
    Phys Chem Chem Phys; 2015 Jan; 17(1):428-33. PubMed ID: 25407888
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Atomistic determination of the surface structure of Cu
    Zhang R; Li L; Frazer L; Chang KB; Poeppelmeier KR; Chan MKY; Guest JR
    Phys Chem Chem Phys; 2018 Nov; 20(43):27456-27463. PubMed ID: 30357202
    [TBL] [Abstract][Full Text] [Related]  

  • 6. GaN as an interfacial passivation layer: tuning band offset and removing fermi level pinning for III-V MOS devices.
    Zhang Z; Cao R; Wang C; Li HB; Dong H; Wang WH; Lu F; Cheng Y; Xie X; Liu H; Cho K; Wallace R; Wang W
    ACS Appl Mater Interfaces; 2015 Mar; 7(9):5141-9. PubMed ID: 25639492
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Selective Bonding Effect of Heterologous Oxygen Vacancies in Z-Scheme Cu
    Cui E; Hou G; Chen X; Xie M; Zhang F; Deng Y; Wu Y; Yang X
    Langmuir; 2021 Jan; 37(2):894-907. PubMed ID: 33400541
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effects of substitutional doping on Cu vacancy formation in Cu
    Beronio ERA; Colambo IR; Padama AAB
    Phys Chem Chem Phys; 2021 Apr; 23(14):8800-8808. PubMed ID: 33876039
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Investigation of magnetic properties induced by group-V element in doped ZnO.
    Lu YB; Dai Y; Guo M; Yu L; Huang B
    Phys Chem Chem Phys; 2013 Apr; 15(14):5208-14. PubMed ID: 23455330
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A DFT study of adsorption of imidazole, triazole, and tetrazole on oxidized copper surfaces: Cu₂O(111) and Cu₂O(111)-w/o-CuCUS.
    Gustinčič D; Kokalj A
    Phys Chem Chem Phys; 2015 Nov; 17(43):28602-15. PubMed ID: 26443103
    [TBL] [Abstract][Full Text] [Related]  

  • 11. "Butterfly effect" in CuO/graphene composite nanosheets: a small interfacial adjustment triggers big changes in electronic structure and Li-ion storage performance.
    Zhang X; Zhou J; Song H; Chen X; Fedoseeva YV; Okotrub AV; Bulusheva LG
    ACS Appl Mater Interfaces; 2014 Oct; 6(19):17236-44. PubMed ID: 25226227
    [TBL] [Abstract][Full Text] [Related]  

  • 12. XPS study of interface and ligand effects in supported Cu2O and CuO nanometric particles.
    Morales J; Espinos JP; Caballero A; Gonzalez-Elipe AR; Mejias JA
    J Phys Chem B; 2005 Apr; 109(16):7758-65. PubMed ID: 16851901
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In situ redox growth of mesoporous Pd-Cu
    Guo Y; Liu J; Xu YT; Zhao B; Wang X; Fu XZ; Sun R; Wong CP
    Sci Bull (Beijing); 2019 Jun; 64(11):764-773. PubMed ID: 36659546
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Room-temperature ferromagnetism of Cu-doped ZnO films probed by soft X-ray magnetic circular dichroism.
    Herng TS; Qi DC; Berlijn T; Yi JB; Yang KS; Dai Y; Feng YP; Santoso I; Sánchez-Hanke C; Gao XY; Wee AT; Ku W; Ding J; Rusydi A
    Phys Rev Lett; 2010 Nov; 105(20):207201. PubMed ID: 21231259
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tuning the activities of cuprous oxide nanostructures via the oxide-metal interaction.
    Huang W; Liu Q; Zhou Z; Li Y; Ling Y; Wang Y; Tu Y; Wang B; Zhou X; Deng D; Yang B; Yang Y; Liu Z; Bao X; Yang F
    Nat Commun; 2020 May; 11(1):2312. PubMed ID: 32385230
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhanced Visible Light-Induced Charge Separation and Charge Transport in Cu2O-Based Photocathodes by Urea Treatment.
    Wang P; Tang Y; Wen X; Amal R; Ng YH
    ACS Appl Mater Interfaces; 2015 Sep; 7(36):19887-93. PubMed ID: 26305707
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Oxygen vacancy rich Cu
    Lu L; Xu X; Yan J; Shi FN; Huo Y
    Dalton Trans; 2018 Feb; 47(6):2031-2038. PubMed ID: 29349461
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tuning Interfacial Cu-O Atomic Structures for Enhanced Catalytic Applications.
    Sun S; Zhang X; Cui J; Yang Q; Liang S
    Chem Asian J; 2019 Sep; 14(17):2912-2924. PubMed ID: 31273917
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of alloying elements on diamond/Cu interface properties based on first-principles calculations.
    Han J; Yang X; Ren Y; Li Y; Li Y; Li Z
    J Phys Condens Matter; 2023 Jan; 35(11):. PubMed ID: 36538826
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Contributions of magnetic properties in epitaxial copper-doped ZnO.
    Liu H; Zeng F; Gao S; Wang G; Song C; Pan F
    Phys Chem Chem Phys; 2013 Aug; 15(31):13153-61. PubMed ID: 23824337
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.