These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. The pseudo-compartment method for coupling partial differential equation and compartment-based models of diffusion. Yates CA; Flegg MB J R Soc Interface; 2015 May; 12(106):. PubMed ID: 25904527 [TBL] [Abstract][Full Text] [Related]
3. Unified representation of Life's basic properties by a 3-species Stochastic Cubic Autocatalytic Reaction-Diffusion system of equations. Muñuzuri AP; Pérez-Mercader J Phys Life Rev; 2022 Jul; 41():64-83. PubMed ID: 35594602 [TBL] [Abstract][Full Text] [Related]
4. A hybrid algorithm for coupling partial differential equation and compartment-based dynamics. Harrison JU; Yates CA J R Soc Interface; 2016 Sep; 13(122):. PubMed ID: 27628171 [TBL] [Abstract][Full Text] [Related]
5. Stochastic Turing patterns: analysis of compartment-based approaches. Cao Y; Erban R Bull Math Biol; 2014 Dec; 76(12):3051-69. PubMed ID: 25421150 [TBL] [Abstract][Full Text] [Related]
6. The auxiliary region method: a hybrid method for coupling PDE- and Brownian-based dynamics for reaction-diffusion systems. Smith CA; Yates CA R Soc Open Sci; 2018 Aug; 5(8):180920. PubMed ID: 30225082 [TBL] [Abstract][Full Text] [Related]
7. Stochastic lattice model of synaptic membrane protein domains. Li Y; Kahraman O; Haselwandter CA Phys Rev E; 2017 May; 95(5-1):052406. PubMed ID: 28618626 [TBL] [Abstract][Full Text] [Related]
9. Combining cellular automata and Lattice Boltzmann method to model multiscale avascular tumor growth coupled with nutrient diffusion and immune competition. Alemani D; Pappalardo F; Pennisi M; Motta S; Brusic V J Immunol Methods; 2012 Feb; 376(1-2):55-68. PubMed ID: 22154892 [TBL] [Abstract][Full Text] [Related]
10. Coarse-graining and hybrid methods for efficient simulation of stochastic multi-scale models of tumour growth. de la Cruz R; Guerrero P; Calvo J; Alarcón T J Comput Phys; 2017 Dec; 350():974-991. PubMed ID: 29200499 [TBL] [Abstract][Full Text] [Related]
11. Going from microscopic to macroscopic on nonuniform growing domains. Yates CA; Baker RE; Erban R; Maini PK Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Aug; 86(2 Pt 1):021921. PubMed ID: 23005799 [TBL] [Abstract][Full Text] [Related]
12. Stochastic simulation of reaction-diffusion systems: A fluctuating-hydrodynamics approach. Kim C; Nonaka A; Bell JB; Garcia AL; Donev A J Chem Phys; 2017 Mar; 146(12):124110. PubMed ID: 28388111 [TBL] [Abstract][Full Text] [Related]
13. Accurate hybrid stochastic simulation of a system of coupled chemical or biochemical reactions. Salis H; Kaznessis Y J Chem Phys; 2005 Feb; 122(5):54103. PubMed ID: 15740306 [TBL] [Abstract][Full Text] [Related]
14. Stochastic modeling and simulation of reaction-diffusion system with Hill function dynamics. Chen M; Li F; Wang S; Cao Y BMC Syst Biol; 2017 Mar; 11(Suppl 3):21. PubMed ID: 28361679 [TBL] [Abstract][Full Text] [Related]
18. A hybrid method for micro-mesoscopic stochastic simulation of reaction-diffusion systems. Sayyidmousavi A; Rohlf K; Ilie S Math Biosci; 2019 Jun; 312():23-32. PubMed ID: 30998936 [TBL] [Abstract][Full Text] [Related]
19. Extinction in neutrally stable stochastic Lotka-Volterra models. Dobrinevski A; Frey E Phys Rev E Stat Nonlin Soft Matter Phys; 2012 May; 85(5 Pt 1):051903. PubMed ID: 23004784 [TBL] [Abstract][Full Text] [Related]
20. Individual based modeling and parameter estimation for a Lotka-Volterra system. Waniewski J; Jedruch W Math Biosci; 1999 Mar; 157(1-2):23-36. PubMed ID: 10194922 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]