These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Exposure and emission measurements during production, purification, and functionalization of arc-discharge-produced multi-walled carbon nanotubes. Hedmer M; Isaxon C; Nilsson PT; Ludvigsson L; Messing ME; Genberg J; Skaug V; Bohgard M; Tinnerberg H; Pagels JH Ann Occup Hyg; 2014 Apr; 58(3):355-79. PubMed ID: 24389082 [TBL] [Abstract][Full Text] [Related]
4. Carbon Nanotube Emissions from Arc Discharge Production: Classification of Particle Types with Electron Microscopy and Comparison with Direct Reading Techniques. Ludvigsson L; Isaxon C; Nilsson PT; Tinnerberg H; Messing ME; Rissler J; Skaug V; Gudmundsson A; Bohgard M; Hedmer M; Pagels J Ann Occup Hyg; 2016 May; 60(4):493-512. PubMed ID: 26748380 [TBL] [Abstract][Full Text] [Related]
5. Aerosol Emission Monitoring and Assessment of Potential Exposure to Multi-walled Carbon Nanotubes in the Manufacture of Polymer Nanocomposites. Thompson D; Chen SC; Wang J; Pui DY Ann Occup Hyg; 2015 Nov; 59(9):1135-51. PubMed ID: 26209597 [TBL] [Abstract][Full Text] [Related]
6. Particle Emissions from Laboratory Activities Involving Carbon Nanotubes. Lo LM; Tsai CS; Heitbrink WA; Dunn KH; Topmiller J; Ellenbecker M J Nanopart Res; 2017 Aug; 18():. PubMed ID: 29056867 [TBL] [Abstract][Full Text] [Related]
7. Characterization and control of airborne particles emitted during production of epoxy/carbon nanotube nanocomposites. Cena LG; Peters TM J Occup Environ Hyg; 2011 Feb; 8(2):86-92. PubMed ID: 21253981 [TBL] [Abstract][Full Text] [Related]
8. Characterization of exposures to nanoscale particles and fibers during solid core drilling of hybrid carbon nanotube advanced composites. Bello D; Wardle BL; Zhang J; Yamamoto N; Santeufemio C; Hallock M; Virji MA Int J Occup Environ Health; 2010; 16(4):434-50. PubMed ID: 21222387 [TBL] [Abstract][Full Text] [Related]
9. Epoxy composite dusts with and without carbon nanotubes cause similar pulmonary responses, but differences in liver histology in mice following pulmonary deposition. Saber AT; Mortensen A; Szarek J; Koponen IK; Levin M; Jacobsen NR; Pozzebon ME; Mucelli SP; Rickerby DG; Kling K; Atluri R; Madsen AM; Jackson P; Kyjovska ZO; Vogel U; Jensen KA; Wallin H Part Fibre Toxicol; 2016 Jun; 13(1):37. PubMed ID: 27357593 [TBL] [Abstract][Full Text] [Related]
10. Comparison of dust release from epoxy and paint nanocomposites and conventional products during sanding and sawing. Gomez V; Levin M; Saber AT; Irusta S; Dal Maso M; Hanoi R; Santamaria J; Jensen KA; Wallin H; Koponen IK Ann Occup Hyg; 2014 Oct; 58(8):983-94. PubMed ID: 25030708 [TBL] [Abstract][Full Text] [Related]
11. Characterization of Potential Exposures to Nanoparticles and Fibers during Manufacturing and Recycling of Carbon Nanotube Reinforced Polypropylene Composites. Boonruksa P; Bello D; Zhang J; Isaacs JA; Mead JL; Woskie SR Ann Occup Hyg; 2016 Jan; 60(1):40-55. PubMed ID: 26447230 [TBL] [Abstract][Full Text] [Related]
12. Assessment of nanoparticles release into the environment during drilling of carbon nanotubes/epoxy and carbon nanofibres/epoxy nanocomposites. Starost K; Frijns E; Van Laer J; Faisal N; Egizabal A; Elizextea C; Blazquez M; Nelissen I; Njuguna J J Hazard Mater; 2017 Oct; 340():57-66. PubMed ID: 28711833 [TBL] [Abstract][Full Text] [Related]
13. Evaluation of Airborne Particle Emissions from Commercial Products Containing Carbon Nanotubes. Huang G; Park JH; Cena LG; Shelton BL; Peters TM J Nanopart Res; 2012 Oct; 14(11):. PubMed ID: 23204914 [TBL] [Abstract][Full Text] [Related]
14. Laboratory evaluation of a personal aethalometer for assessing airborne carbon nanotube exposures. O'Shaughnessy P; Stoltenberg A; Holder C; Altmaier R J Occup Environ Hyg; 2020 Jun; 17(6):262-273. PubMed ID: 32286917 [TBL] [Abstract][Full Text] [Related]
15. Mechanical Properties and Characterization of Epoxy Composites Containing Highly Entangled As-Received and Acid Treated Carbon Nanotubes. Krieg AS; King JA; Odegard GM; Leftwich TR; Odegard LK; Fraley PD; Miskioglu I; Jolowsky C; Lundblad M; Park JG; Liang R Nanomaterials (Basel); 2021 Sep; 11(9):. PubMed ID: 34578761 [TBL] [Abstract][Full Text] [Related]
16. Inhalation exposure during spray application and subsequent sanding of a wood sealant containing zinc oxide nanoparticles. Cooper MR; West GH; Burrelli LG; Dresser D; Griffin KN; Segrave AM; Perrenoud J; Lippy BE J Occup Environ Hyg; 2017 Jul; 14(7):510-522. PubMed ID: 28406371 [TBL] [Abstract][Full Text] [Related]
17. The impact of different multi-walled carbon nanotubes on the X-band microwave absorption of their epoxy nanocomposites. Che BD; Nguyen BQ; Nguyen LT; Nguyen HT; Nguyen VQ; Van Le T; Nguyen NH Chem Cent J; 2015; 9():10. PubMed ID: 25763100 [TBL] [Abstract][Full Text] [Related]
18. Preparation of airborne Ag/CNT hybrid nanoparticles using an aerosol process and their application to antimicrobial air filtration. Jung JH; Hwang GB; Lee JE; Bae GN Langmuir; 2011 Aug; 27(16):10256-64. PubMed ID: 21751779 [TBL] [Abstract][Full Text] [Related]
19. Quantitative evaluation of carbon nanomaterial releases during electric heating wire cutting and sawing machine cutting of expanded polystyrene-based composites using thermal carbon analysis. Ogura I; Kotake M; Ata S J Occup Environ Hyg; 2019 Feb; 16(2):165-178. PubMed ID: 30427298 [TBL] [Abstract][Full Text] [Related]
20. Exposures to nanoparticles and fibers during injection molding and recycling of carbon nanotube reinforced polycarbonate composites. Boonruksa P; Bello D; Zhang J; Isaacs JA; Mead JL; Woskie SR J Expo Sci Environ Epidemiol; 2017 Jul; 27(4):379-390. PubMed ID: 27189256 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]