BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 26478925)

  • 1. Direct production of naphthenes and paraffins from lignin.
    Kong J; He M; Lercher JA; Zhao C
    Chem Commun (Camb); 2015 Dec; 51(99):17580-3. PubMed ID: 26478925
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hydrodeoxygenation of lignin-derived phenolic compounds to hydrocarbons over Ni/SiO2-ZrO2 catalysts.
    Zhang X; Zhang Q; Wang T; Ma L; Yu Y; Chen L
    Bioresour Technol; 2013 Apr; 134():73-80. PubMed ID: 23500562
    [TBL] [Abstract][Full Text] [Related]  

  • 3. One-Pot Process for Hydrodeoxygenation of Lignin to Alkanes Using Ru-Based Bimetallic and Bifunctional Catalysts Supported on Zeolite Y.
    Wang H; Ruan H; Feng M; Qin Y; Job H; Luo L; Wang C; Engelhard MH; Kuhn E; Chen X; Tucker MP; Yang B
    ChemSusChem; 2017 Apr; 10(8):1846-1856. PubMed ID: 28225212
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Production of Jet Fuel-Range Hydrocarbons from Hydrodeoxygenation of Lignin over Super Lewis Acid Combined with Metal Catalysts.
    Wang H; Wang H; Kuhn E; Tucker MP; Yang B
    ChemSusChem; 2018 Jan; 11(1):285-291. PubMed ID: 29136337
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Efficient and controllable alcoholysis of Kraft lignin catalyzed by porous zeolite-supported nickel-copper catalyst.
    Kong L; Liu C; Gao J; Wang Y; Dai L
    Bioresour Technol; 2019 Mar; 276():310-317. PubMed ID: 30641329
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Titanium nitride-nickel nanocomposite as heterogeneous catalyst for the hydrogenolysis of aryl ethers.
    Molinari V; Giordano C; Antonietti M; Esposito D
    J Am Chem Soc; 2014 Feb; 136(5):1758-61. PubMed ID: 24437507
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In situ generation of Ni nanoparticles from metal-organic framework precursors and their use for biomass hydrodeoxygenation.
    Čelič TB; Grilc M; Likozar B; Tušar NN
    ChemSusChem; 2015 May; 8(10):1703-10. PubMed ID: 25755008
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Production of liquefied fuel from depolymerization of kraft lignin over a novel modified nickel/H-beta catalyst.
    Li W; Dou X; Zhu C; Wang J; Chang HM; Jameel H; Li X
    Bioresour Technol; 2018 Dec; 269():346-354. PubMed ID: 30195227
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hydrodeoxygenation of bio-derived phenols to hydrocarbons using RANEY Ni and Nafion/SiO2 catalysts.
    Zhao C; Kou Y; Lemonidou AA; Li X; Lercher JA
    Chem Commun (Camb); 2010 Jan; 46(3):412-4. PubMed ID: 20066309
    [TBL] [Abstract][Full Text] [Related]  

  • 10. One-Pot Conversion of Lignin into Naphthenes Catalyzed by a Heterogeneous Rhenium Oxide-Modified Iridium Compound.
    Li X; Zhang B; Pan X; Ji J; Ren Y; Wang H; Ji N; Liu Q; Li C
    ChemSusChem; 2020 Sep; 13(17):4409-4419. PubMed ID: 31944598
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Catalytic biorefining of plant biomass to non-pyrolytic lignin bio-oil and carbohydrates through hydrogen transfer reactions.
    Ferrini P; Rinaldi R
    Angew Chem Int Ed Engl; 2014 Aug; 53(33):8634-9. PubMed ID: 24920053
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Selective nickel-catalyzed conversion of model and lignin-derived phenolic compounds to cyclohexanone-based polymer building blocks.
    Schutyser W; Van den Bosch S; Dijkmans J; Turner S; Meledina M; Van Tendeloo G; Debecker DP; Sels BF
    ChemSusChem; 2015 May; 8(10):1805-18. PubMed ID: 25881563
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Catalytic conversion of enzymatic hydrolysis lignin into cycloalkanes over a gamma-alumina supported nickel molybdenum alloy catalyst.
    Liu Q; Bai Y; Chen H; Chen M; Sang Y; Wu K; Ma Z; Ma Y; Li Y
    Bioresour Technol; 2021 Mar; 323():124634. PubMed ID: 33422792
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hydrodeoxygenation of lignin-derived phenols into alkanes by using nanoparticle catalysts combined with Brønsted acidic ionic liquids.
    Yan N; Yuan Y; Dykeman R; Kou Y; Dyson PJ
    Angew Chem Int Ed Engl; 2010 Jul; 49(32):5549-53. PubMed ID: 20593435
    [No Abstract]   [Full Text] [Related]  

  • 15. Solvent effects on the hydrogenolysis of diphenyl ether with Raney nickel and their implications for the conversion of lignin.
    Wang X; Rinaldi R
    ChemSusChem; 2012 Aug; 5(8):1455-66. PubMed ID: 22549827
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of Sugars, Furans, and their Derivatives on Hydrodeoxygenation of Biorefinery Lignin-Rich Wastes to Hydrocarbons.
    Wang H; Duan Y; Zhang Q; Yang B
    ChemSusChem; 2018 Aug; 11(15):2562-2568. PubMed ID: 29968345
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hydrogenolysis of lignosulfonate into phenols over heterogeneous nickel catalysts.
    Song Q; Wang F; Xu J
    Chem Commun (Camb); 2012 Jul; 48(56):7019-21. PubMed ID: 22523746
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Liquefaction of Lignocellulose in Fluid Catalytic Cracker Feed: A Process Concept Study.
    Kumar S; Lange JP; Van Rossum G; Kersten SR
    ChemSusChem; 2015 Dec; 8(23):4086-94. PubMed ID: 26578449
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Design of Nickel Supported on Water-Tolerant Nb
    Leal GF; Lima S; Graça I; Carrer H; Barrett DH; Teixeira-Neto E; Curvelo AAS; Rodella CB; Rinaldi R
    iScience; 2019 May; 15():467-488. PubMed ID: 31125909
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Partial depolymerization of enzymolysis lignin via mild hydrogenolysis over Raney Nickel.
    Xin J; Zhang P; Wolcott MP; Zhang X; Zhang J
    Bioresour Technol; 2014 Mar; 155():422-6. PubMed ID: 24461256
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.