These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 26478925)

  • 41. Catalytic oxidation of biorefinery lignin to value-added chemicals to support sustainable biofuel production.
    Ma R; Xu Y; Zhang X
    ChemSusChem; 2015 Jan; 8(1):24-51. PubMed ID: 25272962
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Bio-based phenols and fuel production from catalytic microwave pyrolysis of lignin by activated carbons.
    Bu Q; Lei H; Wang L; Wei Y; Zhu L; Zhang X; Liu Y; Yadavalli G; Tang J
    Bioresour Technol; 2014 Jun; 162():142-7. PubMed ID: 24747393
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The Conversion of Starch and Sugars into Branched C10 and C11 Hydrocarbons.
    Sutton AD; Kim JK; Wu R; Hoyt CB; Kimball DB; Silks LA; Gordon JC
    ChemSusChem; 2016 Sep; 9(17):2298-300. PubMed ID: 27428812
    [TBL] [Abstract][Full Text] [Related]  

  • 44.
    Urlaub J; Norwig J; Schollmayer C; Holzgrabe U
    J Pharm Biomed Anal; 2019 May; 169():41-48. PubMed ID: 30831451
    [No Abstract]   [Full Text] [Related]  

  • 45. Catalytic lignin valorization process for the production of aromatic chemicals and hydrogen.
    Zakzeski J; Jongerius AL; Bruijnincx PC; Weckhuysen BM
    ChemSusChem; 2012 Aug; 5(8):1602-9. PubMed ID: 22740175
    [TBL] [Abstract][Full Text] [Related]  

  • 46. From biomass to advanced bio-fuel by catalytic pyrolysis/hydro-processing: hydrodeoxygenation of bio-oil derived from biomass catalytic pyrolysis.
    Wang Y; He T; Liu K; Wu J; Fang Y
    Bioresour Technol; 2012 Mar; 108():280-4. PubMed ID: 22281148
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A heterogeneous nickel catalyst for the hydrogenolysis of aryl ethers without arene hydrogenation.
    Sergeev AG; Webb JD; Hartwig JF
    J Am Chem Soc; 2012 Dec; 134(50):20226-9. PubMed ID: 23163756
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Upgrading pyrolysis oil over Ni/HZSM-5 by cascade reactions.
    Zhao C; Lercher JA
    Angew Chem Int Ed Engl; 2012 Jun; 51(24):5935-40. PubMed ID: 22278945
    [No Abstract]   [Full Text] [Related]  

  • 49. Acidic ionic liquids as sustainable approach of cellulose and lignocellulosic biomass conversion without additional catalysts.
    Lopes AM; Bogel-Łukasik R
    ChemSusChem; 2015 Mar; 8(6):947-65. PubMed ID: 25703380
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Selective production of arenes via direct lignin upgrading over a niobium-based catalyst.
    Shao Y; Xia Q; Dong L; Liu X; Han X; Parker SF; Cheng Y; Daemen LL; Ramirez-Cuesta AJ; Yang S; Wang Y
    Nat Commun; 2017 Jul; 8():16104. PubMed ID: 28737172
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Knocking on wood: base metal complexes as catalysts for selective oxidation of lignin models and extracts.
    Hanson SK; Baker RT
    Acc Chem Res; 2015 Jul; 48(7):2037-48. PubMed ID: 26151603
    [TBL] [Abstract][Full Text] [Related]  

  • 52. New insights into the structural organization of the plant polymer lignin.
    Radotić K; Micić M; Jeremić M
    Ann N Y Acad Sci; 2005 Jun; 1048():215-29. PubMed ID: 16154935
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Unravelling Some of the Key Transformations in the Hydrothermal Liquefaction of Lignin.
    Lui MY; Chan B; Yuen AKL; Masters AF; Montoya A; Maschmeyer T
    ChemSusChem; 2017 May; 10(10):2140-2144. PubMed ID: 28371419
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Multi-catalysis reactions: new prospects and challenges of biotechnology to valorize lignin.
    Gasser CA; Hommes G; Schäffer A; Corvini PF
    Appl Microbiol Biotechnol; 2012 Sep; 95(5):1115-34. PubMed ID: 22782247
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Nickel-tungsten carbide catalysts for the production of 2,5-dimethylfuran from biomass-derived molecules.
    Huang YB; Chen MY; Yan L; Guo QX; Fu Y
    ChemSusChem; 2014 Apr; 7(4):1068-72. PubMed ID: 24574062
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Hydrothermal conversion of lignin to substituted phenols and aromatic ethers.
    Singh R; Prakash A; Dhiman SK; Balagurumurthy B; Arora AK; Puri SK; Bhaskar T
    Bioresour Technol; 2014 Aug; 165():319-22. PubMed ID: 24636917
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Efficient cobalt-catalyzed oxidative conversion of lignin models to benzoquinones.
    Biannic B; Bozell JJ
    Org Lett; 2013 Jun; 15(11):2730-3. PubMed ID: 23679189
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Quality determination of nickel-loaded silica prepared from poaceous biomass.
    Ubukata M; Mitsuhashi S; Ueki A; Sano Y; Iwasa N; Fujita S; Arai M
    J Agric Food Chem; 2010 May; 58(10):6312-7. PubMed ID: 20423088
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Depolymerization of organosolv lignin using doped porous metal oxides in supercritical methanol.
    Warner G; Hansen TS; Riisager A; Beach ES; Barta K; Anastas PT
    Bioresour Technol; 2014 Jun; 161():78-83. PubMed ID: 24686374
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Selective production of 4-ethylphenolics from lignin via mild hydrogenolysis.
    Ye Y; Zhang Y; Fan J; Chang J
    Bioresour Technol; 2012 Aug; 118():648-51. PubMed ID: 22717604
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.