These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 26479088)

  • 1. Drift from the Use of Hand-Held Knapsack Pesticide Sprayers in Boyacá (Colombian Andes).
    García-Santos G; Feola G; Nuyttens D; Diaz J
    J Agric Food Chem; 2016 May; 64(20):3990-8. PubMed ID: 26479088
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Simulating Human and Environmental Exposure from Hand-Held Knapsack Pesticide Application: Be-WetSpa-Pest, an Integrative, Spatially Explicit Modeling Approach.
    Binder CR; García-Santos G; Andreoli R; Diaz J; Feola G; Wittensoeldner M; Yang J
    J Agric Food Chem; 2016 May; 64(20):3999-4008. PubMed ID: 26828854
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dermal exposure assessment of pesticide use: the case of sprayers in potato farms in the Colombian highlands.
    Lesmes-Fabian C; García-Santos G; Leuenberger F; Nuyttens D; Binder CR
    Sci Total Environ; 2012 Jul; 430():202-8. PubMed ID: 22652009
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The weight method: a new screening method for estimating pesticide deposition from knapsack sprayers in developing countries.
    García-Santos G; Scheiben D; Binder CR
    Chemosphere; 2011 Mar; 82(11):1571-7. PubMed ID: 21183200
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spray drift reduction under Southern European conditions: a pilot study in the Ecopest Project in Greece.
    Kasiotis KM; Glass CR; Tsakirakis AN; Machera K
    Sci Total Environ; 2014 May; 479-480():132-7. PubMed ID: 24561292
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of a new air-assisted sprayer and two conventional sprayers in terms of deposition, loss to the soil and residue of azoxystrobin and tebuconazole applied to sunlit greenhouse tomato and field cucumber.
    Li Y; Li Y; Pan X; Li QX; Chen R; Li X; Pan C; Song J
    Pest Manag Sci; 2018 Feb; 74(2):448-455. PubMed ID: 28898566
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spatial interpolation methods to predict airborne pesticide drift deposits on soils using knapsack sprayers.
    García-Santos G; Scheiber M; Pilz J
    Chemosphere; 2020 Nov; 258():127231. PubMed ID: 32563063
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Real-Time Monitoring of Spray Drift from Three Different Orchard Sprayers.
    Blanco MN; Fenske RA; Kasner EJ; Yost MG; Seto E; Austin E
    Chemosphere; 2019 May; 222():46-55. PubMed ID: 30690400
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pesticide uptake in potatoes: model and field experiments.
    Juraske R; Vivas CS; Velásquez AE; Santos GG; Moreno MB; Gomez JD; Binder CR; Hellweg S; Dallos JA
    Environ Sci Technol; 2011 Jan; 45(2):651-7. PubMed ID: 21141816
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Direct and indirect drift assessment means. Part 4: a comparative study.
    Nuyttens D; Baetens K; De Schampheleire M; Sonck B
    Commun Agric Appl Biol Sci; 2008; 73(4):769-74. PubMed ID: 19226827
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of the entrained air and initial droplet velocity on the release height parameter of a Gaussian spray drift model.
    Stainier C; Destain MF; Schiffers B; Lebeau F
    Commun Agric Appl Biol Sci; 2006; 71(2 Pt A):197-200. PubMed ID: 17390793
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The agricultural dispersal-valley drift spray drift modeling system compared with pesticide drift data.
    Allwine KJ; Thistle HW; Teske ME; Anhold J
    Environ Toxicol Chem; 2002 May; 21(5):1085-90. PubMed ID: 12013131
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Near-field air concentrations of pesticides in potato agriculture in Prince Edward Island.
    Garron CA; Davis KC; Ernst WR
    Pest Manag Sci; 2009 Jun; 65(6):688-96. PubMed ID: 19278022
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Environmentally Optimised Sprayer (EOS)--A software application for comprehensive assessment of environmental safety features of sprayers.
    Doruchowski G; Balsari P; Gil E; Marucco P; Roettele M; Wehmann HJ
    Sci Total Environ; 2014 Jun; 482-483():201-7. PubMed ID: 24651055
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spray Drift from Three Airblast Sprayer Technologies in a Modern Orchard Work Environment.
    Kasner EJ; Fenske RA; Hoheisel GA; Galvin K; Blanco MN; Seto EYW; Yost MG
    Ann Work Expo Health; 2020 Jan; 64(1):25-37. PubMed ID: 31786605
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effect of air support on droplet characteristics and spray drift.
    Nuyttens D; Dekeyser D; De Schampheleire M; Baetens K; Sonck B
    Commun Agric Appl Biol Sci; 2007; 72(2):71-9. PubMed ID: 18399426
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pesticide distribution in an agricultural environment in Argentina.
    Loewy RM; Monza LB; Kirs VE; Savini MC
    J Environ Sci Health B; 2011; 46(8):662-70. PubMed ID: 21806463
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Primary and secondary pesticide drift profiles from a peach orchard.
    Zivan O; Bohbot-Raviv Y; Dubowski Y
    Chemosphere; 2017 Jun; 177():303-310. PubMed ID: 28314235
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of Watershed-Scale Simulations of In-Stream Pesticide Concentrations from Off-Target Spray Drift.
    Winchell MF; Pai N; Brayden BH; Stone C; Whatling P; Hanzas JP; Stryker JJ
    J Environ Qual; 2018 Jan; 47(1):79-87. PubMed ID: 29415099
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spray drift mitigation using opposing synchronized air-blast sprayers.
    Van Steenwyk RA; Siegel JP; Bisabri B; Cabuslay CS; Choi JM; Steggall JW; Mace KC; Blecker SW; Poe PA; Peters-Collaer SR; Klassen P
    Pest Manag Sci; 2021 Feb; 77(2):895-905. PubMed ID: 32949089
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.