BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 26479121)

  • 1. Analysis of waste management issues arising from a field study evaluating decontamination of a biological agent from a building.
    Lemieux P; Wood J; Drake J; Minamyer S; Silvestri E; Yund C; Nichols T; Ierardi M; Amidan B
    J Air Waste Manag Assoc; 2016 Jan; 66(1):17-27. PubMed ID: 26479121
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A biological decontamination process for small, privately owned buildings.
    Krauter P; Tucker M
    Biosecur Bioterror; 2011 Sep; 9(3):301-9. PubMed ID: 21882971
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fate and transport of viable
    Wood JP; Silvestri E; Pirhalla M; Serre SD; Calfee MW; McConkey K; Boe T; Monge M; Aslett D; Abdel-Hady A
    J Air Waste Manag Assoc; 2024 Jun; ():1-14. PubMed ID: 38775962
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Determination of the efficacy of two building decontamination strategies by surface sampling with culture and quantitative PCR analysis.
    Buttner MP; Cruz P; Stetzenbach LD; Klima-Comba AK; Stevens VL; Cronin TD
    Appl Environ Microbiol; 2004 Aug; 70(8):4740-7. PubMed ID: 15294810
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chlorine exposure during a biological decontamination study in a mock subway tunnel.
    Archer JD; DeVries R; Imler AJ
    J Occup Environ Hyg; 2019 Sep; 16(9):607-619. PubMed ID: 31298626
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development and field testing of a mobile chlorine dioxide generation system for the decontamination of buildings contaminated with Bacillus anthracis.
    Wood JP; Blair Martin G
    J Hazard Mater; 2009 May; 164(2-3):1460-7. PubMed ID: 18990488
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Decontamination efficacy of three commercial-off-the-shelf (COTS) sporicidal disinfectants on medium-sized panels contaminated with surrogate spores of Bacillus anthracis.
    Edmonds JM; Sabol JP; Rastogi VK
    PLoS One; 2014; 9(6):e99827. PubMed ID: 24940605
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Use of superabsorbent polymer gels for surface decontamination of Bacillus anthracis spores.
    Rogers JV; Richter WR; Choi YW; Judd AK
    Lett Appl Microbiol; 2009 Feb; 48(2):180-6. PubMed ID: 19055629
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Challenges in disposing of anthrax waste.
    Lesperance AM; Stein S; Upton JF; Toomey C
    Biosecur Bioterror; 2011 Sep; 9(3):310-4. PubMed ID: 21882972
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fumigation of a laboratory-scale HVAC system with hydrogen peroxide for decontamination following a biological contamination incident.
    Meyer KM; Calfee MW; Wood JP; Mickelsen L; Attwood B; Clayton M; Touati A; Delafield R
    J Appl Microbiol; 2014 Mar; 116(3):533-41. PubMed ID: 24279292
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A systematic methodology for selecting decontamination strategies following a biocontamination event.
    Krauter P; Edwards D; Yang L; Tucker M
    Biosecur Bioterror; 2011 Sep; 9(3):262-70. PubMed ID: 21823924
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Responding to biological incidents--what are the current issues in remediation of the contaminated environment?
    Pottage T; Goode E; Wyke S; Bennett AM
    Environ Int; 2014 Nov; 72():133-9. PubMed ID: 24530001
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparative sporicidal effects of disinfectants after release of a biological agent.
    Kenar L; Ortatatli M; Yaren H; Karayilanoglu T; Aydogan H
    Mil Med; 2007 Jun; 172(6):616-21. PubMed ID: 17615843
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Decontamination assessment of Bacillus anthracis, Bacillus subtilis, and Geobacillus stearothermophilus spores on indoor surfaces using a hydrogen peroxide gas generator.
    Rogers JV; Sabourin CL; Choi YW; Richter WR; Rudnicki DC; Riggs KB; Taylor ML; Chang J
    J Appl Microbiol; 2005; 99(4):739-48. PubMed ID: 16162224
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Activity of selected oxidizing microbicides against the spores of Clostridium difficile: relevance to environmental control.
    Perez J; Springthorpe VS; Sattar SA
    Am J Infect Control; 2005 Aug; 33(6):320-5. PubMed ID: 16061137
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of inoculation method on the determination of decontamination efficacy against Bacillus spores.
    Ryan SP; Lee SD; Calfee MW; Wood JP; McDonald S; Clayton M; Griffin-Gatchalian N; Touati A; Smith L; Nysewander M
    World J Microbiol Biotechnol; 2014 Oct; 30(10):2609-23. PubMed ID: 24928258
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Developing a regional recovery framework.
    Lesperance AM; Olson J; Stein S; Clark R; Kelly H; Sheline J; Tietje G; Williamson M; Woodcock J
    Biosecur Bioterror; 2011 Sep; 9(3):280-7. PubMed ID: 21882969
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Source reduction in an anthrax-contaminated mail facility.
    Canter DA; Sgroi TJ; O'Connor L; Kempter CJ
    Biosecur Bioterror; 2009 Dec; 7(4):405-12. PubMed ID: 20028249
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Systematic evaluation of the efficacy of chlorine dioxide in decontamination of building interior surfaces contaminated with anthrax spores.
    Rastogi VK; Ryan SP; Wallace L; Smith LS; Shah SS; Martin GB
    Appl Environ Microbiol; 2010 May; 76(10):3343-51. PubMed ID: 20305025
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Decontamination Efficacy and Skin Toxicity of Two Decontaminants against Bacillus anthracis.
    Stratilo CW; Crichton MK; Sawyer TW
    PLoS One; 2015; 10(9):e0138491. PubMed ID: 26394165
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.