These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 26479496)

  • 1. 3D Graphene-Infused Polyimide with Enhanced Electrothermal Performance for Long-Term Flexible Space Applications.
    Loeblein M; Bolker A; Tsang SH; Atar N; Uzan-Saguy C; Verker R; Gouzman I; Grossman E; Teo EH
    Small; 2015 Dec; 11(48):6425-34. PubMed ID: 26479496
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reinforced carbon nanotubes as electrically conducting and flexible films for space applications.
    Atar N; Grossman E; Gouzman I; Bolker A; Hanein Y
    ACS Appl Mater Interfaces; 2014 Nov; 6(22):20400-7. PubMed ID: 25366559
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Boosting the Heat Dissipation Performance of Graphene/Polyimide Flexible Carbon Film via Enhanced Through-Plane Conductivity of 3D Hybridized Structure.
    Li Y; Zhu Y; Jiang G; Cano ZP; Yang J; Wang J; Liu J; Chen X; Chen Z
    Small; 2020 Feb; 16(8):e1903315. PubMed ID: 31999051
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Atomic-Oxygen-Durable and Electrically-Conductive CNT-POSS-Polyimide Flexible Films for Space Applications.
    Atar N; Grossman E; Gouzman I; Bolker A; Murray VJ; Marshall BC; Qian M; Minton TK; Hanein Y
    ACS Appl Mater Interfaces; 2015 Jun; 7(22):12047-56. PubMed ID: 25945409
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Flexible polyimide films hybrid with functionalized boron nitride and graphene oxide simultaneously to improve thermal conduction and dimensional stability.
    Tsai MH; Tseng IH; Chiang JC; Li JJ
    ACS Appl Mater Interfaces; 2014 Jun; 6(11):8639-45. PubMed ID: 24863455
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lightweight, Superelastic, and Mechanically Flexible Graphene/Polyimide Nanocomposite Foam for Strain Sensor Application.
    Qin Y; Peng Q; Ding Y; Lin Z; Wang C; Li Y; Xu F; Li J; Yuan Y; He X; Li Y
    ACS Nano; 2015 Sep; 9(9):8933-41. PubMed ID: 26301319
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-Performance Graphene Sponges Reinforced with Polyimide for Room-Temperature Piezoresistive Sensing.
    Huang J; Wang J; Yang Z; Yang S
    ACS Appl Mater Interfaces; 2018 Mar; 10(9):8180-8189. PubMed ID: 29417809
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microfabrication of functional polyimide films and microstructures for flexible MEMS applications.
    Dong Z; He Q; Shen D; Gong Z; Zhang D; Zhang W; Ono T; Jiang Y
    Microsyst Nanoeng; 2023; 9():31. PubMed ID: 36969964
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hydroxylated graphene-based flexible carbon film with ultrahigh electrical and thermal conductivity.
    Ding J; Ur Rahman O; Zhao H; Peng W; Dou H; Chen H; Yu H
    Nanotechnology; 2017 Sep; 28(39):39LT01. PubMed ID: 28731426
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A flexible insulator of a hollow SiO2 sphere and polyimide hybrid for flexible OLEDs.
    Kim MK; Kim DW; Shin DW; Seo SJ; Chung HK; Yoo JB
    Phys Chem Chem Phys; 2015 Jan; 17(4):2416-20. PubMed ID: 25493299
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modified graphene/polyimide composite films with strongly enhanced thermal conductivity.
    Wu X; Li H; Cheng K; Qiu H; Yang J
    Nanoscale; 2019 Apr; 11(17):8219-8225. PubMed ID: 30973564
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Graphene polyimide nanocomposites; thermal, mechanical, and high-temperature shape memory effects.
    Yoonessi M; Shi Y; Scheiman DA; Lebron-Colon M; Tigelaar DM; Weiss RA; Meador MA
    ACS Nano; 2012 Sep; 6(9):7644-55. PubMed ID: 22931435
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thermally and electrically conductive multifunctional sensor based on epoxy/graphene composite.
    Han S; Chand A; Araby S; Cai R; Chen S; Kang H; Cheng R; Meng Q
    Nanotechnology; 2020 Feb; 31(7):075702. PubMed ID: 31639783
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sequential Oxidation Strategy for the Fabrication of Liquid Metal Electrothermal Thin Film with Desired Printing and Functional Property.
    Fu JH; Zhang XD; Qin P; Liu J
    Micromachines (Basel); 2021 Dec; 12(12):. PubMed ID: 34945389
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Configurable three-dimensional boron nitride-carbon architecture and its tunable electronic behavior with stable thermal performances.
    Loeblein M; Tay RY; Tsang SH; Ng WB; Teo EH
    Small; 2014 Aug; 10(15):2992-9. PubMed ID: 24789084
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Advances in Polyimide-Based Materials for Space Applications.
    Gouzman I; Grossman E; Verker R; Atar N; Bolker A; Eliaz N
    Adv Mater; 2019 May; 31(18):e1807738. PubMed ID: 30803081
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Flexible solid-state supercapacitors based on three-dimensional graphene hydrogel films.
    Xu Y; Lin Z; Huang X; Liu Y; Huang Y; Duan X
    ACS Nano; 2013 May; 7(5):4042-9. PubMed ID: 23550832
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of chemical modification of graphene on mechanical, electrical, and thermal properties of polyimide/graphene nanocomposites.
    Ha HW; Choudhury A; Kamal T; Kim DH; Park SY
    ACS Appl Mater Interfaces; 2012 Sep; 4(9):4623-30. PubMed ID: 22928645
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Screen-Printed High-Performance Flexible Electrothermal Films Based on Three-Dimensional Intercalation Graphene Nanosheets/MWCNT/Carbon Black Composite.
    Liao Y; Tian Y; Ma X; Zhao M; Qian J; Wang X
    ACS Appl Mater Interfaces; 2020 Oct; 12(42):48077-48083. PubMed ID: 32975925
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Flexible and transparent electrothermal film heaters based on graphene materials.
    Sui D; Huang Y; Huang L; Liang J; Ma Y; Chen Y
    Small; 2011 Nov; 7(22):3186-92. PubMed ID: 21990210
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.