These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 26479614)

  • 21. A photoacoustic imager with light illumination through an infrared-transparent silicon CMUT array.
    Chen J; Wang M; Cheng JC; Wang YH; Li PC; Cheng X
    IEEE Trans Ultrason Ferroelectr Freq Control; 2012 Apr; 59(4):766-75. PubMed ID: 22547287
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Controlling the transmission of ultrahigh frequency bulk acoustic waves in silicon by 45° mirrors.
    Wang S; Gao J; Carlier J; Campistron P; NDieguene A; Guo S; Matar OB; Dorothee DC; Nongaillard B
    Ultrasonics; 2011 Jul; 51(5):532-8. PubMed ID: 21295322
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Dynamic ultrasound modulated optical tomography by self-referenced photorefractive holography.
    Benoit a la Guillaume E; Bortolozzo U; Huignard JP; Residori S; Ramaz F
    Opt Lett; 2013 Feb; 38(3):287-9. PubMed ID: 23381413
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effect of pulse depletion in a Brillouin optical time-domain analysis system.
    Thévenaz L; Mafang SF; Lin J
    Opt Express; 2013 Jun; 21(12):14017-35. PubMed ID: 23787592
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Acousto-optic Bragg imaging of biological tissue.
    Teklu A; Declercq NF; McPherson M
    J Acoust Soc Am; 2014 Aug; 136(2):634-7. PubMed ID: 25096098
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Photonic crystal fiber mapping using Brillouin echoes distributed sensing.
    Stiller B; Foaleng SM; Beugnot JC; Lee MW; Delqué M; Bouwmans G; Kudlinski A; Thévenaz L; Maillotte H; Sylvestre T
    Opt Express; 2010 Sep; 18(19):20136-42. PubMed ID: 20940904
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A high-frequency ultrasound imaging system combining limited-angle spatial compounding and model-based synthetic aperture focusing.
    Opretzka J; Vogt M; Ermert H
    IEEE Trans Ultrason Ferroelectr Freq Control; 2011 Jul; 58(7):1355-65. PubMed ID: 21768020
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Lithium niobate transducers for MRI-guided ultrasonic microsurgery.
    Kotopoulis S; Wang H; Cochran S; Postema M
    IEEE Trans Ultrason Ferroelectr Freq Control; 2011 Aug; 58(8):1570-6. PubMed ID: 21859576
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Optical imaging of shock waves produced by a high-energy electromagnetic transducer.
    Carnell MT; Alcock RD; Emmony DC
    Phys Med Biol; 1993 Nov; 38(11):1575-88. PubMed ID: 8272433
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Mechanical spectra of glass-forming liquids. II. Gigahertz-frequency longitudinal and shear acoustic dynamics in glycerol and DC704 studied by time-domain Brillouin scattering.
    Klieber C; Hecksher T; Pezeril T; Torchinsky DH; Dyre JC; Nelson KA
    J Chem Phys; 2013 Mar; 138(12):12A544. PubMed ID: 23556795
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Optical tracking of superficial dynamics from an acoustic radiation force-induced excitation.
    Bouchard RR; Van Soest G; Trahey GE; Van Der Steen AF
    Ultrason Imaging; 2009 Jan; 31(1):17-30. PubMed ID: 19507680
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Multilayer transducer for acoustic bladder volume assessment on the basis of nonlinear wave propagation.
    Merks EJ; van Neer P; Bom N; van der Steen AF; de Jong N
    Ultrasound Med Biol; 2009 Oct; 35(10):1690-9. PubMed ID: 19647917
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Differential phase optical coherence probe for depth-resolved detection of photothermal response in tissue.
    Telenkov SA; Dave DP; Sethuraman S; Akkin T; Milner TE
    Phys Med Biol; 2004 Jan; 49(1):111-9. PubMed ID: 14971776
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Arbitrary shaped, liquid filled reverberators with non-resonant transducers for broadband focusing of ultrasound using Time Reversed Acoustics.
    Sarvazyan A; Fillinger L
    Ultrasonics; 2009 Mar; 49(3):301-5. PubMed ID: 19062060
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Signal-to-noise analysis of biomedical photoacoustic measurements in time and frequency domains.
    Telenkov S; Mandelis A
    Rev Sci Instrum; 2010 Dec; 81(12):124901. PubMed ID: 21198041
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Broadband acoustic properties of a murine skull.
    Estrada H; Rebling J; Turner J; Razansky D
    Phys Med Biol; 2016 Mar; 61(5):1932-46. PubMed ID: 26878583
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Time-domain reconstruction algorithms and numerical simulations for thermoacoustic tomography in various geometries.
    Xu M; Xu Y; Wang LV
    IEEE Trans Biomed Eng; 2003 Sep; 50(9):1086-99. PubMed ID: 12943276
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Excitation of acoustic waves from cylindrical polyvinylidene fluoride (PVDF) film confined in a concentric wall.
    Toda M
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Jul; 55(7):1653-9. PubMed ID: 18986955
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Measurement range enlargement in Brillouin optical correlation-domain reflectometry based on double-modulation scheme.
    Mizuno Y; He Z; Hotate K
    Opt Express; 2010 Mar; 18(6):5926-33. PubMed ID: 20389611
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Polarimetric heterodyning fiber laser sensor for directional acoustic signal measurement.
    Lyu C; Wu C; Tam HY; Lu C; Ma J
    Opt Express; 2013 Jul; 21(15):18273-80. PubMed ID: 23938698
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.