These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 26479664)

  • 1. Experiment evaluation of speckle suppression efficiency of 2D quasi-spiral M-sequence-based diffractive optical element.
    Lapchuk A; Pashkevich GA; Prygun OV; Yurlov V; Borodin Y; Kryuchyn A; Korchovyi AA; Shylo S
    Appl Opt; 2015 Oct; 54(28):E47-54. PubMed ID: 26479664
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dispersion of speckle suppression efficiency for binary DOE structures: spectral domain and coherent matrix approaches.
    Lapchuk A; Prygun O; Fu M; Le Z; Xiong Q; Kryuchyn A
    Opt Express; 2017 Jun; 25(13):14575-14597. PubMed ID: 28789043
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optimal speckle suppression in laser projectors using a single two-dimensional Barker code diffractive optical element.
    Lapchuk A; Kryuchyn A; Petrov V; Klymenko V
    J Opt Soc Am A Opt Image Sci Vis; 2013 Feb; 30(2):227-32. PubMed ID: 23456057
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Experimental evaluation of speckle suppression efficiency using a moving 2D Barker code DOE.
    Lapchuk A; Shyhovets OV; Kryuchyn A; Petrov V; Pashkevich GA; Bogdan OV; Kononov A; Klymenko A
    J Opt Soc Am A Opt Image Sci Vis; 2013 Nov; 30(11):2253-8. PubMed ID: 24322922
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Experimental demonstration of a flexible DOE loop with wideband speckle suppression for laser pico-projectors.
    Lapchuk A; Gorbov I; Le Z; Xiong Q; Lu Z; Prygun O; Pankratova A
    Opt Express; 2018 Oct; 26(20):26188-26195. PubMed ID: 30469709
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optical schemes for speckle suppression by Barker code diffractive optical elements.
    Lapchuk A; Kryuchyn A; Petrov V; Shyhovets OV; Pashkevich GA; Bogdan OV; Kononov A; Klymenko A
    J Opt Soc Am A Opt Image Sci Vis; 2013 Sep; 30(9):1760-7. PubMed ID: 24323256
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Binary code DOE optimization for speckle suppression in a laser display.
    Yurlov V; Lapchuk A; Han K; Son SJ; Kim BH; Yu NE
    Appl Opt; 2018 Oct; 57(30):8851-8860. PubMed ID: 30461868
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Full speckle suppression in laser projectors using two Barker code-type diffractive optical elements.
    Lapchuk A; Kryuchyn A; Petrov V; Yurlov V; Klymenko V
    J Opt Soc Am A Opt Image Sci Vis; 2013 Jan; 30(1):22-31. PubMed ID: 23455999
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Speckle reduction using a motionless diffractive optical element.
    Ouyang G; Tong Z; Akram MN; Wang K; Kartashov V; Yan X; Chen X
    Opt Lett; 2010 Sep; 35(17):2852-4. PubMed ID: 20808346
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Achromatic digital speckle pattern interferometer with constant radial in-plane sensitivity by using a diffractive optical element.
    Viotti MR; Kapp W; Albertazzi G A
    Appl Opt; 2009 Apr; 48(12):2275-81. PubMed ID: 19381178
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spatially Multiplexed Speckle on 1D Sensors for High-Speed 2D Sensing Applications.
    Rubio-Oliver R; Sanz M; Sigalov M; GarcĂ­a J; Beiderman Y
    Sensors (Basel); 2024 May; 24(11):. PubMed ID: 38894087
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modifying the laser beam intensity distribution for obtaining improved strength characteristics of an optical trap.
    Rykov MA; Skidanov RV
    Appl Opt; 2014 Jan; 53(2):156-64. PubMed ID: 24514044
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Silicon-based transmissive diffractive optical element.
    Lee CC; Chang YC; Wang CM; Chang JY; Chi GC
    Opt Lett; 2003 Jul; 28(14):1260-2. PubMed ID: 12885040
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanical stress measurement by an achromatic optical digital speckle pattern interferometry strain sensor with radial in-plane sensitivity: experimental comparison with electrical strain gauges.
    Viotti MR; Albertazzi G A; Kapp WA
    Appl Opt; 2011 Mar; 50(7):1014-22. PubMed ID: 21364725
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Error tracking-control-reduction algorithm for designing diffractive optical element with high image reconstruction quality.
    Pang Y; Wu X; Pang H; Liu L; Xue L; Liu W; Shi L; Cao A; Deng Q
    Opt Express; 2020 Mar; 28(7):10090-10103. PubMed ID: 32225602
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Speckle suppression in projection displays by using a motionless changing diffuser.
    Kartashov V; Akram MN
    J Opt Soc Am A Opt Image Sci Vis; 2010 Dec; 27(12):2593-601. PubMed ID: 21119744
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Design and fabrication of a diffractive optical element as a spectrum-splitting solar concentrator for lateral multijunction solar cells.
    Huang Q; Wang J; Quan B; Zhang Q; Zhang D; Li D; Meng Q; Pan L; Wang Y; Yang G
    Appl Opt; 2013 Apr; 52(11):2312-9. PubMed ID: 23670760
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-performance laser projection display illumination system based on a diffractive optical element.
    Liang C; Zhang W; Rui D; Sui Y; Yang H
    Appl Opt; 2017 Apr; 56(10):2810-2815. PubMed ID: 28375246
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A quasi two-dimensional model for sound attenuation by the sonic crystals.
    Gupta A; Lim KM; Chew CH
    J Acoust Soc Am; 2012 Oct; 132(4):2909-14. PubMed ID: 23039557
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Diffraction of conic and Gaussian beams by a spiral phase plate.
    Kotlyar VV; Kovalev AA; Khonina SN; Skidanov RV; Soifer VA; Elfstrom H; Tossavainen N; Turunen J
    Appl Opt; 2006 Apr; 45(12):2656-65. PubMed ID: 16633415
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.