These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 26479775)

  • 1. Light-induced cation exchange for copper sulfide based CO2 reduction.
    Manzi A; Simon T; Sonnleitner C; Döblinger M; Wyrwich R; Stern O; Stolarczyk JK; Feldmann J
    J Am Chem Soc; 2015 Nov; 137(44):14007-10. PubMed ID: 26479775
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exciton Quenching Due to Copper Diffusion Limits the Photocatalytic Activity of CdS/Cu2S Nanorod Heterostructures.
    Jen-La Plante I; Teitelboim A; Pinkas I; Oron D; Mokari T
    J Phys Chem Lett; 2014 Feb; 5(3):590-6. PubMed ID: 26276614
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Controlling electron beam-induced structure modifications and cation exchange in cadmium sulfide-copper sulfide heterostructured nanorods.
    Zheng H; Sadtler B; Habenicht C; Freitag B; Alivisatos AP; Kisielowski C
    Ultramicroscopy; 2013 Nov; 134():207-13. PubMed ID: 23830376
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A cation exchange strategy to construct Rod-shell CdS/Cu
    Guo Y; Liang Z; Xue Y; Wang X; Zhang X; Tian J
    J Colloid Interface Sci; 2022 Feb; 608(Pt 1):158-163. PubMed ID: 34626963
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Artificial photosynthesis of C1-C3 hydrocarbons from water and CO2 on titanate nanotubes decorated with nanoparticle elemental copper and CdS quantum dots.
    Park H; Ou HH; Colussi AJ; Hoffmann MR
    J Phys Chem A; 2015 May; 119(19):4658-66. PubMed ID: 25611343
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gold-copper nanoalloys supported on TiO2 as photocatalysts for CO2 reduction by water.
    Neaţu Ş; Maciá-Agulló JA; Concepción P; Garcia H
    J Am Chem Soc; 2014 Nov; 136(45):15969-76. PubMed ID: 25329687
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Photocatalytic carbon dioxide reduction by copper oxide nanocluster-grafted niobate nanosheets.
    Yin G; Nishikawa M; Nosaka Y; Srinivasan N; Atarashi D; Sakai E; Miyauchi M
    ACS Nano; 2015 Feb; 9(2):2111-9. PubMed ID: 25629438
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Hierarchical Z-Scheme CdS-WO3 Photocatalyst with Enhanced CO2 Reduction Activity.
    Jin J; Yu J; Guo D; Cui C; Ho W
    Small; 2015 Oct; 11(39):5262-71. PubMed ID: 26265014
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Selective Photocatalytic CO
    Kuehnel MF; Orchard KL; Dalle KE; Reisner E
    J Am Chem Soc; 2017 May; 139(21):7217-7223. PubMed ID: 28467076
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stand-Alone CdS Nanocrystals for Photocatalytic CO
    Feng YX; Wang HJ; Wang JW; Zhang W; Zhang M; Lu TB
    ACS Appl Mater Interfaces; 2021 Jun; 13(22):26573-26580. PubMed ID: 34038075
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthesis of Cd
    Kozlova EA; Lyulyukin MN; Markovskaya DV; Selishchev DS; Cherepanova SV; Kozlov DV
    Photochem Photobiol Sci; 2019 Apr; 18(4):871-877. PubMed ID: 30387484
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Production of renewable fuels by the photohydrogenation of CO2: effect of the Cu species loaded onto TiO2 photocatalysts.
    Chen BR; Nguyen VH; Wu JC; Martin R; Kočí K
    Phys Chem Chem Phys; 2016 Feb; 18(6):4942-51. PubMed ID: 26807649
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanism of Photocatalytic CO
    Bhosale SS; Kharade AK; Jokar E; Fathi A; Chang SM; Diau EW
    J Am Chem Soc; 2019 Dec; 141(51):20434-20442. PubMed ID: 31800224
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Versatile Synthesis of Hollow Metal Sulfides via Reverse Cation Exchange Reactions for Photocatalytic CO
    Zeng R; Lian K; Su B; Lu L; Lin J; Tang D; Lin S; Wang X
    Angew Chem Int Ed Engl; 2021 Nov; 60(47):25055-25062. PubMed ID: 34490697
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Unique Features of the Photocatalytic Reduction of H
    Roy A; Chhetri M; Prasad S; Waghmare UV; Rao CNR
    ACS Appl Mater Interfaces; 2018 Jan; 10(3):2526-2536. PubMed ID: 29278485
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Isolated Square-Planar Copper Center in Boron Imidazolate Nanocages for Photocatalytic Reduction of CO
    Zhang HX; Hong QL; Li J; Wang F; Huang X; Chen S; Tu W; Yu D; Xu R; Zhou T; Zhang J
    Angew Chem Int Ed Engl; 2019 Aug; 58(34):11752-11756. PubMed ID: 31232501
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Formation of Copper Catalysts for CO2 Reduction with High Ethylene/Methane Product Ratio Investigated with In Situ X-ray Absorption Spectroscopy.
    Eilert A; Roberts FS; Friebel D; Nilsson A
    J Phys Chem Lett; 2016 Apr; 7(8):1466-70. PubMed ID: 27045045
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Selective visible-light driven highly efficient photocatalytic reduction of CO
    Wang S; Bai X; Li Q; Ouyang Y; Shi L; Wang J
    Nanoscale Horiz; 2021 Jul; 6(8):661-668. PubMed ID: 34046657
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analytical modeling of localized surface plasmon resonance in heterostructure copper sulfide nanocrystals.
    Caldwell AH; Ha DH; Ding X; Robinson RD
    J Chem Phys; 2014 Oct; 141(16):164125. PubMed ID: 25362290
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Photocatalytic reduction of carbon dioxide by hydrous hydrazine over Au-Cu alloy nanoparticles supported on SrTiO3/TiO2 coaxial nanotube arrays.
    Kang Q; Wang T; Li P; Liu L; Chang K; Li M; Ye J
    Angew Chem Int Ed Engl; 2015 Jan; 54(3):841-5. PubMed ID: 25422137
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.