These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 26479791)

  • 1. Spatial light modulator phase mask implementation of wavefront encoded 3D computational-optical microscopy.
    King SV; Doblas A; Patwary N; Saavedra G; Martínez-Corral M; Preza C
    Appl Opt; 2015 Oct; 54(29):8587-95. PubMed ID: 26479791
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Point-spread function engineering to reduce the impact of spherical aberration on 3D computational fluorescence microscopy imaging.
    Yuan S; Preza C
    Opt Express; 2011 Nov; 19(23):23298-314. PubMed ID: 22109208
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Experimental validation of a customized phase mask designed to enable efficient computational optical sectioning microscopy through wavefront encoding.
    Patwary N; Shabani H; Doblas A; Saavedra G; Preza C
    Appl Opt; 2017 Mar; 56(9):D14-D23. PubMed ID: 28375383
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reducing effects of aberration in 3D fluorescence imaging using wavefront coding with a radially symmetric phase mask.
    Patwary N; King SV; Saavedra G; Preza C
    Opt Express; 2016 Jun; 24(12):12905-21. PubMed ID: 27410310
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High precision wavefront control in point spread function engineering for single emitter localization.
    Siemons M; Hulleman CN; Thorsen RØ; Smith CS; Stallinga S
    Opt Express; 2018 Apr; 26(7):8397-8416. PubMed ID: 29715807
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Performance evaluation of extended depth of field microscopy in the presence of spherical aberration and noise.
    King SV; Yuan S; Preza C
    J Biomed Opt; 2018 Mar; 23(3):1-15. PubMed ID: 29600602
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Binary phase masks for easy system alignment and basic aberration sensing with spatial light modulators in STED microscopy.
    Klauss A; Conrad F; Hille C
    Sci Rep; 2017 Nov; 7(1):15699. PubMed ID: 29147005
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spatial and spectral imaging of point-spread functions using a spatial light modulator.
    Munagavalasa S; Schroeder B; Hua X; Jia S
    Opt Commun; 2017 Dec; 404():51-54. PubMed ID: 30319153
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Axial super-localisation using rotating point spread functions shaped by polarisation-dependent phase modulation.
    Roider C; Jesacher A; Bernet S; Ritsch-Marte M
    Opt Express; 2014 Feb; 22(4):4029-37. PubMed ID: 24663724
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phase-retrieved pupil functions in wide-field fluorescence microscopy.
    Hanser BM; Gustafsson MG; Agard DA; Sedat JW
    J Microsc; 2004 Oct; 216(Pt 1):32-48. PubMed ID: 15369481
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Experimental evidence of the theoretical spatial frequency response of cubic phase mask wavefront coding imaging systems.
    Somayaji M; Bhakta VR; Christensen MP
    Opt Express; 2012 Jan; 20(2):1878-95. PubMed ID: 22274533
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Limits of imaging-system simplification using cubic mask wavefront coding.
    Larivière-Bastien M; Thibault S
    Opt Lett; 2013 Oct; 38(19):3830-3. PubMed ID: 24081064
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multiplexed phase-space imaging for 3D fluorescence microscopy.
    Liu HY; Zhong J; Waller L
    Opt Express; 2017 Jun; 25(13):14986-14995. PubMed ID: 28788934
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Through-focus response of multifocal intraocular lenses evaluated with a spatial light modulator.
    Remón L; Arias A; Calatayud A; Furlan WD; Monsoriu JA
    Appl Opt; 2012 Dec; 51(36):8594-8. PubMed ID: 23262599
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optical test-benches for multiple source wavefront propagation and spatiotemporal point-spread function emulation.
    Weddell SJ; Lambert AJ
    Appl Opt; 2014 Dec; 53(35):8205-15. PubMed ID: 25608061
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Efficient implementation of a spatial light modulator as a diffractive optical microlens array in a digital Shack-Hartmann wavefront sensor.
    Zhao L; Bai N; Li X; Ong LS; Fang ZP; Asundi AK
    Appl Opt; 2006 Jan; 45(1):90-4. PubMed ID: 16422324
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantitative SLM-based Differential Interference Contrast imaging.
    McIntyre TJ; Maurer C; Fassl S; Khan S; Bernet S; Ritsch-Marte M
    Opt Express; 2010 Jun; 18(13):14063-78. PubMed ID: 20588538
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Common-path phase-shifting lensless holographic microscopy.
    Micó V; García J
    Opt Lett; 2010 Dec; 35(23):3919-21. PubMed ID: 21124565
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phase Compensation of the Non-Uniformity of the Liquid Crystal on Silicon Spatial Light Modulator at Pixel Level.
    Zeng Z; Li Z; Fang F; Zhang X
    Sensors (Basel); 2021 Feb; 21(3):. PubMed ID: 33535480
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Adaptive null interferometric test using spatial light modulator for free-form surfaces.
    Xue S; Chen S; Tie G; Tian Y
    Opt Express; 2019 Mar; 27(6):8414-8428. PubMed ID: 31052659
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.