These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
408 related articles for article (PubMed ID: 26479907)
1. Productivity and carbon footprint of perennial grass-forage legume intercropping strategies with high or low nitrogen fertilizer input. Hauggaard-Nielsen H; Lachouani P; Knudsen MT; Ambus P; Boelt B; Gislum R Sci Total Environ; 2016 Jan; 541():1339-1347. PubMed ID: 26479907 [TBL] [Abstract][Full Text] [Related]
2. Reducing N Yao Z; Yan G; Zheng X; Wang R; Liu C; Butterbach-Bahl K Environ Pollut; 2017 Dec; 231(Pt 1):929-941. PubMed ID: 28888212 [TBL] [Abstract][Full Text] [Related]
3. Effect of nitrogen fertilizer rates on carbon footprint and ecosystem service of carbon sequestration in rice production. Jiang Z; Zhong Y; Yang J; Wu Y; Li H; Zheng L Sci Total Environ; 2019 Jun; 670():210-217. PubMed ID: 30903894 [TBL] [Abstract][Full Text] [Related]
4. A Comparative Nitrogen Balance and Productivity Analysis of Legume and Non-legume Supported Cropping Systems: The Potential Role of Biological Nitrogen Fixation. Iannetta PP; Young M; Bachinger J; Bergkvist G; Doltra J; Lopez-Bellido RJ; Monti M; Pappa VA; Reckling M; Topp CF; Walker RL; Rees RM; Watson CA; James EK; Squire GR; Begg GS Front Plant Sci; 2016; 7():1700. PubMed ID: 27917178 [TBL] [Abstract][Full Text] [Related]
5. Global meta-analysis reveals agro-grassland productivity varies based on species diversity over time. Ashworth AJ; Toler HD; Allen FL; Augé RM PLoS One; 2018; 13(7):e0200274. PubMed ID: 29990337 [TBL] [Abstract][Full Text] [Related]
6. [Effect of reduced nitrogen fertilization on carbon footprint in spring maize-late rice production system]. Yu XQ; Jiang ZH; Wang JH; Lin JD; Liu YZ; Yang JP Ying Yong Sheng Tai Xue Bao; 2019 Apr; 30(4):1397-1403. PubMed ID: 30994304 [TBL] [Abstract][Full Text] [Related]
7. Carbon footprint and net carbon gain of major long-term cropping systems under no-tillage. Bansal S; Yin X; Schneider L; Sykes V; Jagadamma S; Lee J J Environ Manage; 2022 Apr; 307():114505. PubMed ID: 35085973 [TBL] [Abstract][Full Text] [Related]
8. Impact of organic and inorganic fertilizers on the yield and quality of silage corn intercropped with soybean. Baghdadi A; Halim RA; Ghasemzadeh A; Ramlan MF; Sakimin SZ PeerJ; 2018; 6():e5280. PubMed ID: 30386686 [TBL] [Abstract][Full Text] [Related]
9. [Effect of organic material incorporation in rice season on N2O emissions from following winter wheat growing season]. Zou JW; Huang Y; Zong LG; Zheng XH; Wang YS Huan Jing Ke Xue; 2006 Jul; 27(7):1264-8. PubMed ID: 16881292 [TBL] [Abstract][Full Text] [Related]
10. Gaseous nitrogen emissions and forage nitrogen uptake on soils fertilized with raw and treated swine manure. Chantigny MH; Angers DA; Rochette P; Bélanger G; Massé D; Côté D J Environ Qual; 2007; 36(6):1864-72. PubMed ID: 17965389 [TBL] [Abstract][Full Text] [Related]
11. Nitrogen yield advantage from grass-legume mixtures is robust over a wide range of legume proportions and environmental conditions. Suter M; Connolly J; Finn JA; Loges R; Kirwan L; Sebastià MT; Lüscher A Glob Chang Biol; 2015 Jun; 21(6):2424-38. PubMed ID: 25626994 [TBL] [Abstract][Full Text] [Related]
12. Pinto peanut cover crop nitrogen contributions and potential to mitigate nitrous oxide emissions in subtropical coffee plantations. Rose TJ; Kearney LJ; Morris S; Van Zwieten L; Erler DV Sci Total Environ; 2019 Mar; 656():108-117. PubMed ID: 30504013 [TBL] [Abstract][Full Text] [Related]
13. Soil Nitrate Nitrogen Content and Grain Yields of Organically Grown Cereals as Affected by a Strip Tillage and Forage Legume Intercropping. Arlauskienė A; Gecaitė V; Toleikienė M; Šarūnaitė L; Kadžiulienė Ž Plants (Basel); 2021 Jul; 10(7):. PubMed ID: 34371654 [TBL] [Abstract][Full Text] [Related]
14. Nitrogen availability from composts for humid region perennial grass and legume-grass forage production. Lynch DH; Voroney RP; Warman PR J Environ Qual; 2004; 33(4):1509-20. PubMed ID: 15254133 [TBL] [Abstract][Full Text] [Related]
15. Crop rotations for increased soil carbon: perenniality as a guiding principle. King AE; Blesh J Ecol Appl; 2018 Jan; 28(1):249-261. PubMed ID: 29112790 [TBL] [Abstract][Full Text] [Related]
16. Energy budgeting and carbon footprint of transgenic cotton-wheat production system through peanut intercropping and FYM addition. Singh RJ; Ahlawat IP Environ Monit Assess; 2015 May; 187(5):282. PubMed ID: 25899542 [TBL] [Abstract][Full Text] [Related]
17. Modeling the impact of crop rotation with legume on nitrous oxide emissions from rain-fed agricultural systems in Australia under alternative future climate scenarios. Ma Y; Schwenke G; Sun L; Liu L; Wang B; Yang B Sci Total Environ; 2018 Jul; 630():1544-1552. PubMed ID: 29554771 [TBL] [Abstract][Full Text] [Related]
18. Micrometeorological measurements over 3 years reveal differences in N2 O emissions between annual and perennial crops. Abalos D; Brown SE; Vanderzaag AC; Gordon RJ; Dunfield KE; Wagner-Riddle C Glob Chang Biol; 2016 Mar; 22(3):1244-55. PubMed ID: 26491961 [TBL] [Abstract][Full Text] [Related]
19. Sugarcane/soybean intercropping with reduced nitrogen input improves crop productivity and reduces carbon footprint in China. Wang X; Feng Y; Yu L; Shu Y; Tan F; Gou Y; Luo S; Yang W; Li Z; Wang J Sci Total Environ; 2020 Jun; 719():137517. PubMed ID: 32120112 [TBL] [Abstract][Full Text] [Related]
20. Strategies to mitigate the nitrous oxide emissions from nitrogen fertilizer applied with organic fertilizers in sugarcane. Lourenço KS; Rossetto R; Vitti AC; Montezano ZF; Soares JR; Sousa RM; do Carmo JB; Kuramae EE; Cantarella H Sci Total Environ; 2019 Feb; 650(Pt 1):1476-1486. PubMed ID: 30308834 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]