These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

73 related articles for article (PubMed ID: 26479929)

  • 41. Effect of optical aberrations on the color appearance of small defocused lights.
    Gupta P; Guo H; Atchison DA; Zele AJ
    J Opt Soc Am A Opt Image Sci Vis; 2010 May; 27(5):960-7. PubMed ID: 20448760
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Transverse chromatic aberration in virtual reality head-mounted displays.
    Beams R; Kim AS; Badano A
    Opt Express; 2019 Sep; 27(18):24877-24884. PubMed ID: 31510369
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Compromise between spherical and chromatic aberration and depth of focus in aspheric intraocular lenses.
    Franchini A
    J Cataract Refract Surg; 2007 Mar; 33(3):497-509. PubMed ID: 17321402
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Comparison of wavefront aberrations in rabbit and human eyes.
    Chen L; Huang LC; Gray B; Chernyak DA
    Clin Exp Optom; 2014 Nov; 97(6):534-9. PubMed ID: 25069625
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Peripheral vision and hazard detection with average phakic and pseudophakic optical errors.
    Venkataraman AP; Rosén R; Heredia AA; Piers P; Vidal CC; Lundström L
    Biomed Opt Express; 2021 Jun; 12(6):3082-3090. PubMed ID: 34221646
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The effect of chromatic dispersion on pseudophakic optical performance.
    Zhao H; Mainster MA
    Br J Ophthalmol; 2007 Sep; 91(9):1225-9. PubMed ID: 17475697
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Limits of spherical blur determined with an adaptive optics mirror.
    Atchison DA; Guo H; Fisher SW
    Ophthalmic Physiol Opt; 2009 May; 29(3):300-11. PubMed ID: 19422562
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Failures of isoluminance caused by ocular chromatic aberrations.
    Bradley A; Zhang X; Thibos L
    Appl Opt; 1992 Jul; 31(19):3657-67. PubMed ID: 20725338
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Optimization design of a stereo-photographic system based on achromatic double-prism arrays.
    Sun WS; Tien CL; Chu PY; Hung ZY
    Appl Opt; 2018 Sep; 57(27):8034-8043. PubMed ID: 30462075
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Comment on "Measurement and correction of transverse chromatic offsets for multi-wavelength retinal microscopy in the living eye".
    Artal P
    Biomed Opt Express; 2012 Nov; 3(11):2772-3. PubMed ID: 23162716
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Improving the spatial resolution of volume Bragg grating two-dimensional monochromatic images.
    Duan J; Zhao X; Luo Y; Zhang D
    Appl Opt; 2018 Apr; 57(12):3159-3165. PubMed ID: 29714350
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Design of a freeform electronic viewfinder coupled to aberration fields of freeform optics.
    Bauer A; Rolland JP
    Opt Express; 2015 Nov; 23(22):28141-53. PubMed ID: 26561085
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Multi-periscopic prism device for field expansion.
    Peli E; Vargas-Martin F; Kurukuti NM; Jung JH
    Biomed Opt Express; 2020 Sep; 11(9):4872-4889. PubMed ID: 33014587
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Chromatic cues for the sign of defocus in the peripheral retina.
    Zheleznyak L; Liu C; Winter S
    Biomed Opt Express; 2024 Sep; 15(9):5098-5114. PubMed ID: 39296412
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Adaptive optics visual simulators: a review of recent optical designs and applications [Invited].
    Marcos S; Artal P; Atchison DA; Hampson K; Legras R; Lundström L; Yoon G
    Biomed Opt Express; 2022 Dec; 13(12):6508-6532. PubMed ID: 36589577
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Eye-tracking technology for real-time monitoring of transverse chromatic aberration.
    Privitera CM; Sabesan R; Winter S; Tiruveedhula P; Roorda A
    Opt Lett; 2016 Apr; 41(8):1728-31. PubMed ID: 27082330
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Effect of induced transverse chromatic aberration on peripheral vision.
    Winter S; Fathi MT; Venkataraman AP; Rosén R; Seidemann A; Esser G; Lundström L; Unsbo P
    J Opt Soc Am A Opt Image Sci Vis; 2015 Oct; 32(10):1764-71. PubMed ID: 26479929
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Transverse chromatic aberration across the visual field of the human eye.
    Winter S; Sabesan R; Tiruveedhula P; Privitera C; Unsbo P; Lundström L; Roorda A
    J Vis; 2016 Nov; 16(14):9. PubMed ID: 27832270
    [TBL] [Abstract][Full Text] [Related]  

  • 59.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 60.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.