These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 26479952)

  • 1. Nanoscale Electromechanics To Measure Thermal Conductivity, Expansion, and Interfacial Losses.
    Mathew JP; Patel R; Borah A; Maliakkal CB; Abhilash TS; Deshmukh MM
    Nano Lett; 2015 Nov; 15(11):7621-6. PubMed ID: 26479952
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thermal and Thermoelectric Transport in Highly Resistive Single Sb
    Ko TY; Shellaiah M; Sun KW
    Sci Rep; 2016 Oct; 6():35086. PubMed ID: 27713527
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Micro/nanoscale spatial resolution temperature probing for the interfacial thermal characterization of epitaxial graphene on 4H-SiC.
    Yue Y; Zhang J; Wang X
    Small; 2011 Dec; 7(23):3324-33. PubMed ID: 21997970
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lattice thermal conductivity crossovers in semiconductor nanowires.
    Mingo N; Broido DA
    Phys Rev Lett; 2004 Dec; 93(24):246106. PubMed ID: 15697834
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Scanning thermal microscopy with heat conductive nanowire probes.
    Timofeeva M; Bolshakov A; Tovee PD; Zeze DA; Dubrovskii VG; Kolosov OV
    Ultramicroscopy; 2016 Mar; 162():42-51. PubMed ID: 26735005
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Estimating thermal conductivity of amorphous silica nanoparticles and nanowires using molecular dynamics simulations.
    Mahajan SS; Subbarayan G; Sammakia BG
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Nov; 76(5 Pt 2):056701. PubMed ID: 18233784
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Negative Thermal Expansion of Ultrathin Metal Nanowires: A Computational Study.
    Ho DT; Kwon SY; Park HS; Kim SY
    Nano Lett; 2017 Aug; 17(8):5113-5118. PubMed ID: 28678511
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantitative heat dissipation characteristics in current-carrying GaN nanowires probed by combining scanning thermal microscopy and spatially resolved Raman spectroscopy.
    Soudi A; Dawson RD; Gu Y
    ACS Nano; 2011 Jan; 5(1):255-62. PubMed ID: 21155591
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Plasmonic Heating in Au Nanowires at Low Temperatures: The Role of Thermal Boundary Resistance.
    Zolotavin P; Alabastri A; Nordlander P; Natelson D
    ACS Nano; 2016 Jul; 10(7):6972-9. PubMed ID: 27355238
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interfacial Engineering of Silicon Carbide Nanowire/Cellulose Microcrystal Paper toward High Thermal Conductivity.
    Yao Y; Zeng X; Pan G; Sun J; Hu J; Huang Y; Sun R; Xu JB; Wong CP
    ACS Appl Mater Interfaces; 2016 Nov; 8(45):31248-31255. PubMed ID: 27788322
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thermal conductivity and secondary porosity of single anatase TiO₂ nanowire.
    Feng X; Huang X; Wang X
    Nanotechnology; 2012 May; 23(18):185701. PubMed ID: 22499063
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dynamic Thermal Properties Estimation Using Sensitivity Coefficients for Rapid Heating Process.
    Muniandy A; Benyathiar P; Mishra DK; Ozadali F
    Foods; 2021 Aug; 10(8):. PubMed ID: 34441734
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modified data analysis for thermal conductivity measurements of polycrystalline silicon microbridges using a steady state Joule heating technique.
    Sayer RA; Piekos ES; Phinney LM
    Rev Sci Instrum; 2012 Dec; 83(12):124904. PubMed ID: 23278015
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Combined scanning probe electronic and thermal characterization of an indium arsenide nanowire.
    Wagner T; Menges F; Riel H; Gotsmann B; Stemmer A
    Beilstein J Nanotechnol; 2018; 9():129-136. PubMed ID: 29441258
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Employing Cathodoluminescence for Nanothermometry and Thermal Transport Measurements in Semiconductor Nanowires.
    Mauser KW; Solà-Garcia M; Liebtrau M; Damilano B; Coulon PM; Vézian S; Shields PA; Meuret S; Polman A
    ACS Nano; 2021 Jul; 15(7):11385-11395. PubMed ID: 34156820
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Temperature Dependence of Thermal Conductivity of Giant-Scale Supported Monolayer Graphene.
    Liu J; Li P; Xu S; Xie Y; Wang Q; Ma L
    Nanomaterials (Basel); 2022 Aug; 12(16):. PubMed ID: 36014664
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of magnetic domain walls and magnetic field on the thermal conductivity of magnetic nanowires.
    Huang HT; Lai MF; Hou YF; Wei ZH
    Nano Lett; 2015 May; 15(5):2773-9. PubMed ID: 25839230
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thermal conductivity reduction in silicon fishbone nanowires.
    Maire J; Anufriev R; Hori T; Shiomi J; Volz S; Nomura M
    Sci Rep; 2018 Mar; 8(1):4452. PubMed ID: 29535335
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Utilizing mechanical strain to mitigate the intrinsic loss mechanisms in oscillating metal nanowires.
    Kim SY; Park HS
    Phys Rev Lett; 2008 Nov; 101(21):215502. PubMed ID: 19113423
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Heat treatment of whole milk by the direct joule effect--experimental and numerical approaches to fouling mechanisms.
    Fillaudeau L; Winterton P; Leuliet JC; Tissier JP; Maury V; Semet F; Debreyne P; Berthou M; Chopard F
    J Dairy Sci; 2006 Dec; 89(12):4475-89. PubMed ID: 17106078
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.