These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

259 related articles for article (PubMed ID: 26480023)

  • 21. Intracellular response to process optimization and impact on productivity and product aggregates for a high-titer CHO cell process.
    Handlogten MW; Lee-O'Brien A; Roy G; Levitskaya SV; Venkat R; Singh S; Ahuja S
    Biotechnol Bioeng; 2018 Jan; 115(1):126-138. PubMed ID: 28941283
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A framework for the systematic design of fed-batch strategies in mammalian cell culture.
    Kyriakopoulos S; Kontoravdi C
    Biotechnol Bioeng; 2014 Dec; 111(12):2466-76. PubMed ID: 24975682
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Optimization of cultivation conditions in spin tubes for Chinese hamster ovary cells producing erythropoietin and the comparison of glycosylation patterns in different cultivation vessels.
    Strnad J; Brinc M; Spudić V; Jelnikar N; Mirnik L; Carman B; Kravanja Z
    Biotechnol Prog; 2010; 26(3):653-63. PubMed ID: 20544713
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Quantitative Proteomic Analysis of Cellular Responses to a Designed Amino Acid Feed in a Monoclonal Antibody Producing Chinese Hamster Ovary Cell Line.
    Torkashvand F; Mahboudi F; Vossoughi M; Fatemi E; Moosavi Basri SM; Heydari A; Vaziri B
    Iran Biomed J; 2018 Nov; 22(6):385-93. PubMed ID: 29678103
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Bioreactor process parameter screening utilizing a Plackett-Burman design for a model monoclonal antibody.
    Agarabi CD; Schiel JE; Lute SC; Chavez BK; Boyne MT; Brorson KA; Khan M; Read EK
    J Pharm Sci; 2015 Jun; 104(6):1919-1928. PubMed ID: 25762022
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Screening and optimization of chemically defined media and feeds with integrated and statistical approaches.
    Xiao Z; Sabourin M; Piras G; Gorfien SF
    Methods Mol Biol; 2014; 1104():117-35. PubMed ID: 24297413
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Cellular responses to individual amino-acid depletion in antibody-expressing and parental CHO cell lines.
    Fomina-Yadlin D; Gosink JJ; McCoy R; Follstad B; Morris A; Russell CB; McGrew JT
    Biotechnol Bioeng; 2014 May; 111(5):965-79. PubMed ID: 24254056
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Engineer Medium and Feed for Modulating N-Glycosylation of Recombinant Protein Production in CHO Cell Culture.
    Fan Y; Kildegaard HF; Andersen MR
    Methods Mol Biol; 2017; 1603():209-226. PubMed ID: 28493133
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Advanced process monitoring and feedback control to enhance cell culture process production and robustness.
    Zhang A; Tsang VL; Moore B; Shen V; Huang YM; Kshirsagar R; Ryll T
    Biotechnol Bioeng; 2015 Dec; 112(12):2495-504. PubMed ID: 26108810
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Exploring metabolic effects of dipeptide feed media on CHO cell cultures by in silico model-guided flux analysis.
    Park SY; Song J; Choi DH; Park U; Cho H; Hong BH; Silberberg YR; Lee DY
    Appl Microbiol Biotechnol; 2024 Dec; 108(1):123. PubMed ID: 38229404
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Utilization of tyrosine- and histidine-containing dipeptides to enhance productivity and culture viability.
    Kang S; Mullen J; Miranda LP; Deshpande R
    Biotechnol Bioeng; 2012 Sep; 109(9):2286-94. PubMed ID: 22447498
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Metabolite profiling of recombinant CHO cells: designing tailored feeding regimes that enhance recombinant antibody production.
    Sellick CA; Croxford AS; Maqsood AR; Stephens G; Westerhoff HV; Goodacre R; Dickson AJ
    Biotechnol Bioeng; 2011 Dec; 108(12):3025-31. PubMed ID: 21769861
    [TBL] [Abstract][Full Text] [Related]  

  • 33. QbD-guided pharmaceutical development of Pembrolizumab biosimilar candidate PSG-024 propelled to industry meeting primary requirements of comparability to Keytruda®.
    Jaffar-Aghaei M; Khanipour F; Maghsoudi A; Sarvestani R; Mohammadian M; Maleki M; Havasi F; Rahmani H; Karagah AH; Kazemali MR
    Eur J Pharm Sci; 2022 Jun; 173():106171. PubMed ID: 35378209
    [TBL] [Abstract][Full Text] [Related]  

  • 34. High zinc ion supplementation of more than 30 μM can increase monoclonal antibody production in recombinant Chinese hamster ovary DG44 cell culture.
    Kim BG; Park HW
    Appl Microbiol Biotechnol; 2016 Mar; 100(5):2163-70. PubMed ID: 26512008
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Chinese hamster ovary cell performance enhanced by a rational divide-and-conquer strategy for chemically defined medium development.
    Liu Y; Zhang W; Deng X; Poon HF; Liu X; Tan WS; Zhou Y; Fan L
    J Biosci Bioeng; 2015 Dec; 120(6):690-6. PubMed ID: 26183860
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Increase in efficiency of media utilization for recombinant protein production in Chinese hamster ovary culture through dilution.
    Thombre S; Gadgil M
    Biotechnol Appl Biochem; 2011; 58(1):25-31. PubMed ID: 21446956
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Nutrient supplementation strategy improves cell concentration and longevity, monoclonal antibody production and lactate metabolism of Chinese hamster ovary cells.
    Pérez-Rodriguez S; Ramírez-Lira MJ; Trujillo-Roldán MA; Valdez-Cruz NA
    Bioengineered; 2020 Dec; 11(1):463-471. PubMed ID: 32223359
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A detailed understanding of the enhanced hypothermic productivity of interferon-gamma by Chinese-hamster ovary cells.
    Fox SR; Tan HK; Tan MC; Wong SC; Yap MG; Wang DI
    Biotechnol Appl Biochem; 2005 Jun; 41(Pt 3):255-64. PubMed ID: 15504103
    [TBL] [Abstract][Full Text] [Related]  

  • 39. CHO cell line specific prediction and control of recombinant monoclonal antibody N-glycosylation.
    Grainger RK; James DC
    Biotechnol Bioeng; 2013 Nov; 110(11):2970-83. PubMed ID: 23737295
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Quick generation of Raman spectroscopy based in-process glucose control to influence biopharmaceutical protein product quality during mammalian cell culture.
    Berry BN; Dobrowsky TM; Timson RC; Kshirsagar R; Ryll T; Wiltberger K
    Biotechnol Prog; 2016; 32(1):224-34. PubMed ID: 26587969
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.