BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

247 related articles for article (PubMed ID: 26480047)

  • 1. Non-Destructive and rapid evaluation of staple foods quality by using spectroscopic techniques: A review.
    Su WH; He HJ; Sun DW
    Crit Rev Food Sci Nutr; 2017 Mar; 57(5):1039-1051. PubMed ID: 26480047
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recent developments and applications of hyperspectral imaging for quality evaluation of agricultural products: a review.
    Liu D; Zeng XA; Sun DW
    Crit Rev Food Sci Nutr; 2015; 55(12):1744-57. PubMed ID: 24915395
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mycotoxin contamination of cereal grain commodities in relation to climate in North West Europe.
    Van Der Fels-Klerx HJ; Klemsdal S; Hietaniemi V; Lindblad M; Ioannou-Kakouri E; Van Asselt ED
    Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2012; 29(10):1581-92. PubMed ID: 22738407
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fusarium mycotoxins in cereals harvested from Hungarian fields.
    Tima H; Brückner A; Mohácsi-Farkas C; Kiskó G
    Food Addit Contam Part B Surveill; 2016 Jun; 9(2):127-31. PubMed ID: 26892197
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Research advances in imaging technology for food safety and quality control].
    Deng Y; Wang X; Yang M; He M; Zhang F
    Se Pu; 2020 Jul; 38(7):741-749. PubMed ID: 34213280
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tools for Defusing a Major Global Food and Feed Safety Risk: Nonbiological Postharvest Procedures To Decontaminate Mycotoxins in Foods and Feeds.
    Temba BA; Sultanbawa Y; Kriticos DJ; Fox GP; Harvey JJ; Fletcher MT
    J Agric Food Chem; 2016 Nov; 64(47):8959-8972. PubMed ID: 27933870
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Paper-based immune-affinity arrays for detection of multiple mycotoxins in cereals.
    Li L; Chen H; Lv X; Wang M; Jiang X; Jiang Y; Wang H; Zhao Y; Xia L
    Anal Bioanal Chem; 2018 Mar; 410(8):2253-2262. PubMed ID: 29411083
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Advancements in IR spectroscopic approaches for the determination of fungal derived contaminations in food crops.
    McMullin D; Mizaikoff B; Krska R
    Anal Bioanal Chem; 2015 Jan; 407(3):653-60. PubMed ID: 25258282
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A rapid Raman detection of deoxynivalenol in agricultural products.
    Yuan J; Sun C; Guo X; Yang T; Wang H; Fu S; Li C; Yang H
    Food Chem; 2017 Apr; 221():797-802. PubMed ID: 27979275
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Dietary exposure assessment of some important Fusarium toxins in cereal-based products in China].
    Wang W; Shao B; Zhu J; Yu H; Li F
    Wei Sheng Yan Jiu; 2010 Nov; 39(6):709-14. PubMed ID: 21351637
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Current methods for mycotoxins analysis and innovative strategies for their reduction in cereals: an overview.
    Shanakhat H; Sorrentino A; Raiola A; Romano A; Masi P; Cavella S
    J Sci Food Agric; 2018 Aug; 98(11):4003-4013. PubMed ID: 29412472
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mycotoxins in breakfast cereals from the Canadian retail market: a 3-year survey.
    Roscoe V; Lombaert GA; Huzel V; Neumann G; Melietio J; Kitchen D; Kotello S; Krakalovich T; Trelka R; Scott PM
    Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2008 Mar; 25(3):347-55. PubMed ID: 18311625
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sources and intake of resistant starch in the Chinese diet.
    Chen L; Liu R; Qin C; Meng Y; Zhang J; Wang Y; Xu G
    Asia Pac J Clin Nutr; 2010; 19(2):274-82. PubMed ID: 20460244
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Research advancements in optical imaging and spectroscopic techniques for nondestructive detection of mold infection and mycotoxins in cereal grains and nuts.
    Mishra G; Panda BK; Ramirez WA; Jung H; Singh CB; Lee SH; Lee I
    Compr Rev Food Sci Food Saf; 2021 Sep; 20(5):4612-4651. PubMed ID: 34338431
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The potential and applicability of infrared spectroscopic methods for the rapid screening and routine analysis of mycotoxins in food crops.
    Freitag S; Sulyok M; Logan N; Elliott CT; Krska R
    Compr Rev Food Sci Food Saf; 2022 Nov; 21(6):5199-5224. PubMed ID: 36215130
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Natural co-occurrence of deoxynivalenol and fumonisins B1 and B2 in Italian marketed foodstuffs.
    Cirillo T; Ritieni A; Galvano F; Amodio Cocchieri R
    Food Addit Contam; 2003 Jun; 20(6):566-71. PubMed ID: 12881130
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mycotoxins in infant/toddler foods and breakfast cereals in the US retail market.
    Zhang K; Flannery BM; Oles CJ; Adeuya A
    Food Addit Contam Part B Surveill; 2018 Sep; 11(3):183-190. PubMed ID: 29575988
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Advanced Analysis of Roots and Tubers by Hyperspectral Techniques.
    Su WH; Sun DW
    Adv Food Nutr Res; 2019; 87():255-303. PubMed ID: 30678816
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Updated survey of Fusarium species and toxins in Finnish cereal grains.
    Hietaniemi V; Rämö S; Yli-Mattila T; Jestoi M; Peltonen S; Kartio M; Sieviläinen E; Koivisto T; Parikka P
    Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2016 May; 33(5):831-48. PubMed ID: 27002810
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Barriers impairing mineral bioaccessibility and bioavailability in plant-based foods and the perspectives for food processing.
    Rousseau S; Kyomugasho C; Celus M; Hendrickx MEG; Grauwet T
    Crit Rev Food Sci Nutr; 2020; 60(5):826-843. PubMed ID: 30632768
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.