These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 26480153)

  • 21. Three-dimensional and high-speed swept-source optical coherence tomography for in vivo investigation of human anterior eye segments.
    Yasuno Y; Madjarova VD; Makita S; Akiba M; Morosawa A; Chong C; Sakai T; Chan KP; Itoh M; Yatagai T
    Opt Express; 2005 Dec; 13(26):10652-64. PubMed ID: 19503280
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Structural and functional human retinal imaging with a fiber-based visible light OCT ophthalmoscope.
    Chong SP; Bernucci M; Radhakrishnan H; Srinivasan VJ
    Biomed Opt Express; 2017 Jan; 8(1):323-337. PubMed ID: 28101421
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Limiting factors to the OCT axial resolution for in-vivo imaging of human and rodent retina in the 1060 nm wavelength range.
    Hariri S; Moayed AA; Dracopoulos A; Hyun C; Boyd S; Bizheva K
    Opt Express; 2009 Dec; 17(26):24304-16. PubMed ID: 20052141
    [TBL] [Abstract][Full Text] [Related]  

  • 24. [Full-field OCT].
    Dubois A; Boccara C
    Med Sci (Paris); 2006 Oct; 22(10):859-64. PubMed ID: 17026940
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Line-field parallel swept source interferometric imaging at up to 1 MHz.
    Fechtig DJ; Schmoll T; Grajciar B; Drexler W; Leitgeb RA
    Opt Lett; 2014 Sep; 39(18):5333-6. PubMed ID: 26466264
    [TBL] [Abstract][Full Text] [Related]  

  • 26. High-speed spectral-domain optical coherence tomography at 1.3 mum wavelength.
    Yun S; Tearney G; Bouma B; Park B; de Boer J
    Opt Express; 2003 Dec; 11(26):3598-604. PubMed ID: 19471496
    [TBL] [Abstract][Full Text] [Related]  

  • 27. High-speed and high-sensitivity parallel spectral-domain optical coherence tomography using a supercontinuum light source.
    Barrick J; Doblas A; Gardner MR; Sears PR; Ostrowski LE; Oldenburg AL
    Opt Lett; 2016 Dec; 41(24):5620-5623. PubMed ID: 27973473
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Endomicroscopic optical coherence tomography for cellular resolution imaging of gastrointestinal tracts.
    Luo Y; Cui D; Yu X; Bo E; Wang X; Wang N; Braganza CS; Chen S; Liu X; Xiong Q; Chen S; Chen S; Liu L
    J Biophotonics; 2018 Apr; 11(4):e201700141. PubMed ID: 28787543
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Spectrally-sampled OCT for sensitivity improvement from limited optical power.
    Jung EJ; Park JS; Jeong MY; Kim CS; Eom TJ; Yu BA; Gee S; Lee J; Kim MK
    Opt Express; 2008 Oct; 16(22):17457-67. PubMed ID: 18958028
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Optimization for Axial Resolution, Depth Range, and Sensitivity of Spectral Domain Optical Coherence Tomography at 1.3 µm.
    Lee SW; Jeong HW; Kim BM; Ahn YC; Jung W; Chen Z
    J Korean Phys Soc; 2009 Dec; 55(6):2354-2360. PubMed ID: 23239900
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Micrometer axial resolution OCT for corneal imaging.
    Yadav R; Lee KS; Rolland JP; Zavislan JM; Aquavella JV; Yoon G
    Biomed Opt Express; 2011 Nov; 2(11):3037-46. PubMed ID: 22076265
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The effect of water dispersion and absorption on axial resolution in ultrahigh-resolution optical coherence tomography.
    Hillman T; Sampson D
    Opt Express; 2005 Mar; 13(6):1860-74. PubMed ID: 19495067
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Chip based common-path optical coherence tomography system with an on-chip microlens and multi-reference suppression algorithm.
    Chang L; Weiss N; van Leeuwen TG; Pollnau M; de Ridder RM; Wörhoff K; Subramaniam V; Kanger JS
    Opt Express; 2016 Jun; 24(12):12635-50. PubMed ID: 27410285
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Resolution improvement with dispersion manipulation and a retrieval algorithm in optical coherence tomography.
    Hsu IJ; Sun CW; Lu CW; Yang CC; Chiang CP; Lin CW
    Appl Opt; 2003 Jan; 42(2):227-34. PubMed ID: 12546502
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Computational 3D resolution enhancement for optical coherence tomography with a narrowband visible light source.
    de Wit J; Glentis GO; Kalkman J
    Biomed Opt Express; 2023 Jul; 14(7):3532-3554. PubMed ID: 37497501
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Fourier domain quantum optical coherence tomography.
    Kolenderska SM; Vanholsbeeck F; Kolenderski P
    Opt Express; 2020 Sep; 28(20):29576-29589. PubMed ID: 33114855
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Characterization of an amplified piezoelectric actuator for multiple-reference optical coherence tomography.
    O'Gorman S; Neuhaus K; Alexandrov S; Hogan J; Wilson C; McNamara P; Leahy M
    Appl Opt; 2018 Aug; 57(22):E142-E146. PubMed ID: 30117912
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Time-encoded mid-infrared Fourier-domain optical coherence tomography.
    Zorin I; Gattinger P; Prylepa A; Heise B
    Opt Lett; 2021 Sep; 46(17):4108-4111. PubMed ID: 34469951
    [TBL] [Abstract][Full Text] [Related]  

  • 39. All-depth dispersion cancellation in spectral domain optical coherence tomography using numerical intensity correlations.
    Jensen M; Israelsen NM; Maria M; Feuchter T; Podoleanu A; Bang O
    Sci Rep; 2018 Jun; 8(1):9170. PubMed ID: 29907767
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Simultaneous dual-band ultra-high resolution optical coherence tomography.
    Spöler F; Kray S; Grychtol P; Hermes B; Bornemann J; Först M; Kurz H
    Opt Express; 2007 Aug; 15(17):10832-41. PubMed ID: 19547440
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.