These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 26480154)

  • 41. Efficient potassium diode pumped alkali laser operating in pulsed mode.
    Zhdanov BV; Rotondaro MD; Shaffer MK; Knize RJ
    Opt Express; 2014 Jul; 22(14):17266-70. PubMed ID: 25090540
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Experimental investigation on a diode-pumped cesium-vapor laser stably operated at continuous-wave and pulse regime.
    Chen F; Xu D; Gao F; Zheng C; Zhang K; He Y; Wang C; Guo J
    Opt Express; 2015 May; 23(9):12414-22. PubMed ID: 25969327
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Temporally modulated laser with an alkali vapor amplifier.
    Cai H; Yu Q; An G; Yang J; Ji R; Liu X; Han J; Zhou W; Wang Y
    Opt Lett; 2019 Apr; 44(7):1778-1780. PubMed ID: 30933145
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Theoretical modeling of a diode-pumped Nd:YAG laser with a solid nonfocusing pump light collector.
    Jackson SD; Piper JA
    Appl Opt; 1994 Apr; 33(12):2273-83. PubMed ID: 20885574
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Prospects for diode-pumped alkali-atom-based hollow-core photonic-crystal fiber lasers.
    Sintov Y; Malka D; Zalevsky Z
    Opt Lett; 2014 Aug; 39(16):4655-8. PubMed ID: 25121841
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Modeling of flowing gas diode pumped alkali lasers: dependence of the operation on the gas velocity and on the nature of the buffer gas.
    Barmashenko BD; Rosenwaks S
    Opt Lett; 2012 Sep; 37(17):3615-7. PubMed ID: 22940967
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Theoretical simulation on exciplex pumped Rb vapor laser.
    Huang J; Xia C; Xu X; Su C; Pan B
    Opt Express; 2019 Jan; 27(1):132-141. PubMed ID: 30645354
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Demonstration of a diode-pumped metastable Ar laser.
    Han J; Glebov L; Venus G; Heaven MC
    Opt Lett; 2013 Dec; 38(24):5458-61. PubMed ID: 24343016
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Dissociative Recombination of K
    Eliyahu-Caspi G; Makov G; Rosenwaks S; Barmashenko BD
    J Phys Chem A; 2022 Sep; 126(34):5751-5760. PubMed ID: 35994326
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Reducing temperature dependence of the output energy of a quasi-continuous wave diode-pumped Nd:YAG laser.
    Lee K; Kim Y; Lee S; Kwon JH; Gwak JS; Yi J
    Appl Opt; 2013 Aug; 52(24):5967-73. PubMed ID: 24085000
    [TBL] [Abstract][Full Text] [Related]  

  • 51. 28W average power hydrocarbon-free rubidium diode pumped alkali laser.
    Zweiback J; Krupke WF
    Opt Express; 2010 Jan; 18(2):1444-9. PubMed ID: 20173972
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Combined guiding effect in the end-pumped laser resonator.
    Yan X; Liu Q; Wang D; Gong M
    Opt Express; 2011 Mar; 19(7):6883-902. PubMed ID: 21451715
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Comparing laser induced plasmas formed in diode and excimer pumped alkali lasers.
    Markosyan AH
    Opt Express; 2018 Jan; 26(1):488-495. PubMed ID: 29328325
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Energy-pooling transitions to doubly excited K atoms at a promoted iron-oxide catalyst surface: more than 30 eV available for reaction.
    Kotarba A; Holmlid L
    Phys Chem Chem Phys; 2009 Jun; 11(21):4351-9. PubMed ID: 19458838
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Efficient Ho:LuLiF4 laser diode-pumped at 1.15 μm.
    Wang SL; Huang CY; Zhao CC; Li HQ; Tang YL; Yang N; Zhang SY; Hang Y; Xu JQ
    Opt Express; 2013 Jul; 21(14):17359-65. PubMed ID: 23938582
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Collisional excitation transfer between the 2P1/2 and 2P3/2 levels in alkali atoms.
    Krause L
    Appl Opt; 1966 Sep; 5(9):1375-82. PubMed ID: 20057554
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Power and energy scaling of a diode-end-pumped Nd:YLF laser through gain optimization.
    Bollig C; Jacobs C; Esser MJ; Bernhardi EH; von Bergmann HM
    Opt Express; 2010 Jun; 18(13):13993-4003. PubMed ID: 20588531
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Study on photoionization in a rubidium diode-pumped alkali laser gain medium with the optogalvanic method.
    Ge L; Hua W; Wang H; Yang Z; Xu X
    Opt Lett; 2013 Jan; 38(2):199-201. PubMed ID: 23454961
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Diode-end-pumped continuous wave single-longitudinal-mode Nd:GdVO4 laser at 1342 nm.
    Wang Y; Li W; Pan L; Yu J; Zhang R
    Appl Opt; 2013 Mar; 52(9):1987-91. PubMed ID: 23518746
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Theoretical modeling and experimental demonstration of Raman probe induced spectral dip for realizing a superluminal laser.
    Yablon J; Zhou Z; Zhou M; Wang Y; Tseng S; Shahriar MS
    Opt Express; 2016 Nov; 24(24):27444-27456. PubMed ID: 27906317
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.