These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 26480169)

  • 1. Evidence of near-infrared partial photonic bandgap in polymeric rod-connected diamond structures.
    Chen L; Taverne MP; Zheng X; Lin JD; Oulton R; Lopez-Garcia M; Ho YL; Rarity JG
    Opt Express; 2015 Oct; 23(20):26565-75. PubMed ID: 26480169
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Direct wide-angle measurement of a photonic band structure in a three-dimensional photonic crystal using infrared Fourier imaging spectroscopy.
    Chen L; Lopez-Garcia M; Taverne MP; Zheng X; Ho YD; Rarity J
    Opt Lett; 2017 Apr; 42(8):1584-1587. PubMed ID: 28409804
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Direct laser writing of three-dimensional photonic-crystal templates for telecommunications.
    Deubel M; von Freymann G; Wegener M; Pereira S; Busch K; Soukoulis CM
    Nat Mater; 2004 Jul; 3(7):444-7. PubMed ID: 15195083
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fabrication and characterization of silicon woodpile photonic crystals with a complete bandgap at telecom wavelengths.
    Staude I; Thiel M; Essig S; Wolff C; Busch K; von Freymann G; Wegener M
    Opt Lett; 2010 Apr; 35(7):1094-6. PubMed ID: 20364228
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Design and fabrication of rod-type two-dimensional photonic crystal slabs with large high-order bandgaps in near-infrared wavelengths.
    Jiang L; Jia W; Zheng G; Li X
    Opt Lett; 2012 May; 37(9):1424-6. PubMed ID: 22555692
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Diamond-structured photonic crystals.
    Maldovan M; Thomas EL
    Nat Mater; 2004 Sep; 3(9):593-600. PubMed ID: 15343291
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Investigation of optical properties of circular spiral photonic crystals.
    Grossman N; Ovsianikov A; Petrov A; Eich M; Chichkov B
    Opt Express; 2007 Oct; 15(20):13236-43. PubMed ID: 19550592
    [TBL] [Abstract][Full Text] [Related]  

  • 8. All-metallic three-dimensional photonic crystals with a large infrared bandgap.
    Fleming JG; Lin SY; El-Kady I; Biswas R; Ho KM
    Nature; 2002 May; 417(6884):52-5. PubMed ID: 11986662
    [TBL] [Abstract][Full Text] [Related]  

  • 9. On-chip optical filters with designable characteristics based on an interferometer with embedded silicon photonic structures.
    Kocaman S; Aras MS; Panoiu NC; Lu M; Wong CW
    Opt Lett; 2012 Feb; 37(4):665-7. PubMed ID: 22344141
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Large-area 2D periodic crystalline silicon nanodome arrays on nanoimprinted glass exhibiting photonic band structure effects.
    Becker C; Lockau D; Sontheimer T; Schubert-Bischoff P; Rudigier-Voigt E; Bockmeyer M; Schmidt F; Rech B
    Nanotechnology; 2012 Apr; 23(13):135302. PubMed ID: 22422473
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres.
    Blanco A; Chomski E; Grabtchak S; Ibisate M; John S; Leonard SW; Lopez C; Meseguer F; Miguez H; Mondia JP; Ozin GA; Toader O; van Driel HM
    Nature; 2000 May; 405(6785):437-40. PubMed ID: 10839534
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Photonic bandgap properties of void-based body-centered-cubic photonic crystals in polymer.
    Zhou G; Ventura M; Gu M; Matthews A; Kivshar Y
    Opt Express; 2005 Jun; 13(12):4390-5. PubMed ID: 19495354
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hollow multilayer photonic bandgap fibers for NIR applications.
    Kuriki K; Shapira O; Hart S; Benoit G; Kuriki Y; Viens J; Bayindir M; Joannopoulos J; Fink Y
    Opt Express; 2004 Apr; 12(8):1510-7. PubMed ID: 19474976
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Photonic bandgaps of different unit cells in the basic structural unit of germanium-based two-dimensional decagonal photonic quasi-crystals.
    Liu J; Fan Z; Xiao H; Zhang W; Guan C; Yuan L
    Appl Opt; 2011 Aug; 50(24):4868-72. PubMed ID: 21857712
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Design, fabrication and transmitted properties of terahertz paper photonic crystals.
    Zhang W; Lin X; Jin Z; Ma G; Zhong M
    Opt Express; 2013 Nov; 21(23):27622-30. PubMed ID: 24514280
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fabrication and characterization of three-dimensional copper metallodielectric photonic crystals.
    Tal A; Chen YS; Williams HE; Rumpf RC; Kuebler SM
    Opt Express; 2007 Dec; 15(26):18283-93. PubMed ID: 19551126
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Self-Assembly of Patchy Colloidal Rods into Photonic Crystals Robust to Stacking Faults.
    Neophytou A; Manoharan VN; Chakrabarti D
    ACS Nano; 2021 Feb; 15(2):2668-2678. PubMed ID: 33448214
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Design of DNA Origami Diamond Photonic Crystals.
    Park SH; Park H; Hur K; Lee S
    ACS Appl Bio Mater; 2020 Jan; 3(1):747-756. PubMed ID: 35019418
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Preparation of reactive three-dimensional microstructures via direct laser writing and thiol-ene chemistry.
    Quick AS; Fischer J; Richter B; Pauloehrl T; Trouillet V; Wegener M; Barner-Kowollik C
    Macromol Rapid Commun; 2013 Feb; 34(4):335-40. PubMed ID: 23345135
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fabrication of mesoscale polymeric templates for three-dimensional disordered photonic materials.
    Haberko J; Scheffold F
    Opt Express; 2013 Jan; 21(1):1057-65. PubMed ID: 23388999
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.