These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 26480293)

  • 1. Quantum theory of concerted electronic and nuclear fluxes associated with adiabatic intramolecular processes.
    Bredtmann T; Diestler DJ; Li SD; Manz J; Pérez-Torres JF; Tian WJ; Wu YB; Yang Y; Zhai HJ
    Phys Chem Chem Phys; 2015 Nov; 17(44):29421-64. PubMed ID: 26480293
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electronic quantum fluxes during pericyclic reactions exemplified for the Cope rearrangement of semibullvalene.
    Andrae D; Barth I; Bredtmann T; Hege HC; Manz J; Marquardt F; Paulus B
    J Phys Chem B; 2011 May; 115(18):5476-83. PubMed ID: 21261309
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Beyond the Born-Oppenheimer approximation: a treatment of electronic flux density in electronically adiabatic molecular processes.
    Diestler DJ
    J Phys Chem A; 2013 Jun; 117(22):4698-708. PubMed ID: 23634652
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quasi-classical theory of electronic flux density in electronically adiabatic molecular processes.
    Diestler DJ
    J Phys Chem A; 2012 Nov; 116(46):11161-6. PubMed ID: 22775121
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Computation of the electronic flux density in the Born-Oppenheimer approximation.
    Diestler DJ; Kenfack A; Manz J; Paulus B; Pérez-Torres JF; Pohl V
    J Phys Chem A; 2013 Sep; 117(36):8519-27. PubMed ID: 23425513
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Concerted Electronic and Nuclear Fluxes During Coherent Tunnelling in Asymmetric Double-Well Potentials.
    Bredtmann T; Manz J; Zhao JM
    J Phys Chem A; 2016 May; 120(19):3142-54. PubMed ID: 26799383
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Vibrating H2(+)((2)Σg(+), JM = 00) ion as a pulsating quantum bubble in the laboratory frame.
    Manz J; Pérez-Torres JF; Yang Y
    J Phys Chem A; 2014 Sep; 118(37):8411-25. PubMed ID: 24707953
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Na
    Diestler DJ; Jia D; Manz J; Yang Y
    J Phys Chem A; 2018 Mar; 122(8):2150-2159. PubMed ID: 29364671
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Coupled-channels quantum theory of electronic flux density in electronically adiabatic processes: fundamentals.
    Diestler DJ
    J Phys Chem A; 2012 Mar; 116(11):2728-35. PubMed ID: 22103768
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Coupled-channels quantum theory of electronic flux density in electronically adiabatic processes: application to the hydrogen molecule ion.
    Diestler DJ; Kenfack A; Manz J; Paulus B
    J Phys Chem A; 2012 Mar; 116(11):2736-42. PubMed ID: 22103738
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electronic and nuclear flux analysis on nonadiabatic electron transfer reaction: A view from single-configuration adiabatic born-huang representation.
    Matsuzaki R; Takatsuka K
    J Comput Chem; 2019 Jan; 40(1):148-163. PubMed ID: 30520116
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electron density dynamics in the electronic ground state: motion along the Kekulé mode of benzene.
    Schild A; Choudhary D; Sambre VD; Paulus B
    J Phys Chem A; 2012 Nov; 116(46):11355-60. PubMed ID: 22770361
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electron-Nuclear Motion in the Cope Rearrangement of Semibullvalene: Ever Synchronous?
    Bredtmann T; Paulus B
    J Chem Theory Comput; 2013 Jul; 9(7):3026-34. PubMed ID: 26583984
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electronic Flux Density beyond the Born-Oppenheimer Approximation.
    Schild A; Agostini F; Gross EK
    J Phys Chem A; 2016 May; 120(19):3316-25. PubMed ID: 26878256
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Non-Born-Oppenheimer Liouville-von Neumann Dynamics. Evolution of a Subsystem Controlled by Linear and Population-Driven Decay of Mixing with Decoherent and Coherent Switching.
    Zhu C; Jasper AW; Truhlar DG
    J Chem Theory Comput; 2005 Jul; 1(4):527-40. PubMed ID: 26641672
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dissociating H₂⁺(²Σg⁺,JM=00) ion as an exploding quantum bubble.
    Pérez-Torres JF
    J Phys Chem A; 2015 Mar; 119(12):2895-901. PubMed ID: 25751643
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Diagonal Born-Oppenheimer Corrections within the Nuclear-Electronic Orbital Framework.
    Schneider PE; Pavošević F; Hammes-Schiffer S
    J Phys Chem Lett; 2019 Aug; 10(16):4639-4643. PubMed ID: 31347849
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spin-vibronic quantum dynamics for ultrafast excited-state processes.
    Eng J; Gourlaouen C; Gindensperger E; Daniel C
    Acc Chem Res; 2015 Mar; 48(3):809-17. PubMed ID: 25647179
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electronic non-adiabatic states: towards a density functional theory beyond the Born-Oppenheimer approximation.
    Gidopoulos NI; Gross EK
    Philos Trans A Math Phys Eng Sci; 2014 Mar; 372(2011):20130059. PubMed ID: 24516183
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The roles of electronic exchange and correlation in charge-transfer- to-solvent dynamics: Many-electron nonadiabatic mixed quantum/classical simulations of photoexcited sodium anions in the condensed phase.
    Glover WJ; Larsen RE; Schwartz BJ
    J Chem Phys; 2008 Oct; 129(16):164505. PubMed ID: 19045282
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.