BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

249 related articles for article (PubMed ID: 26480348)

  • 1. Increased Transcript Complexity in Genes Associated with Chronic Obstructive Pulmonary Disease.
    Lackey L; McArthur E; Laederach A
    PLoS One; 2015; 10(10):e0140885. PubMed ID: 26480348
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Alternative Splicing Is a Major Factor Shaping Transcriptome Diversity in Mild and Severe Chronic Obstructive Pulmonary Disease.
    Khalenkow D; Brandsma CA; Timens W; Choy DF; Grimbaldeston MA; Rosenberger CM; Slebos DJ; Kerstjens HAM; Faiz A; Koppelman GH; Nawijn MC; van den Berge M; Guryev V
    Am J Respir Cell Mol Biol; 2024 May; 70(5):414-423. PubMed ID: 38315810
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genetic and biochemical markers of obstructive lung disease in the general population.
    Dahl M
    Clin Respir J; 2009 Apr; 3(2):121-2. PubMed ID: 20298391
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An RNA structure-mediated, posttranscriptional model of human α-1-antitrypsin expression.
    Corley M; Solem A; Phillips G; Lackey L; Ziehr B; Vincent HA; Mustoe AM; Ramos SBV; Weeks KM; Moorman NJ; Laederach A
    Proc Natl Acad Sci U S A; 2017 Nov; 114(47):E10244-E10253. PubMed ID: 29109288
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Exploring the cross-phenotype network region of disease modules reveals concordant and discordant pathways between chronic obstructive pulmonary disease and idiopathic pulmonary fibrosis.
    Halu A; Liu S; Baek SH; Hobbs BD; Hunninghake GM; Cho MH; Silverman EK; Sharma A
    Hum Mol Genet; 2019 Jul; 28(14):2352-2364. PubMed ID: 30997486
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Alternative poly-adenylation modulates α1-antitrypsin expression in chronic obstructive pulmonary disease.
    Lackey L; Coria A; Ghosh AJ; Grayeski P; Hatfield A; Shankar V; Platig J; Xu Z; Ramos SBV; Silverman EK; Ortega VE; Cho MH; Hersh CP; Hobbs BD; Castaldi P; Laederach A
    PLoS Genet; 2021 Nov; 17(11):e1009912. PubMed ID: 34784346
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lung tissue shows divergent gene expression between chronic obstructive pulmonary disease and idiopathic pulmonary fibrosis.
    Ghosh AJ; Hobbs BD; Yun JH; Saferali A; Moll M; Xu Z; Chase RP; Morrow J; Ziniti J; Sciurba F; Barwick L; Limper AH; Flaherty K; Criner G; Brown KK; Wise R; Martinez FJ; McGoldrick D; Cho MH; DeMeo DL; Silverman EK; Castaldi PJ; ; Hersh CP
    Respir Res; 2022 Apr; 23(1):97. PubMed ID: 35449067
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Functional interactors of three genome-wide association study genes are differentially expressed in severe chronic obstructive pulmonary disease lung tissue.
    Morrow JD; Zhou X; Lao T; Jiang Z; DeMeo DL; Cho MH; Qiu W; Cloonan S; Pinto-Plata V; Celli B; Marchetti N; Criner GJ; Bueno R; Washko GR; Glass K; Quackenbush J; Choi AM; Silverman EK; Hersh CP
    Sci Rep; 2017 Mar; 7():44232. PubMed ID: 28287180
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genetic regulation of gene expression in the lung identifies CST3 and CD22 as potential causal genes for airflow obstruction.
    Lamontagne M; Timens W; Hao K; Bossé Y; Laviolette M; Steiling K; Campbell JD; Couture C; Conti M; Sherwood K; Hogg JC; Brandsma CA; van den Berge M; Sandford A; Lam S; Lenburg ME; Spira A; Paré PD; Nickle D; Sin DD; Postma DS
    Thorax; 2014 Nov; 69(11):997-1004. PubMed ID: 25182044
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Alternative transcripts of the SERPINA1 gene in alpha-1 antitrypsin deficiency.
    Matamala N; Martínez MT; Lara B; Pérez L; Vázquez I; Jimenez A; Barquín M; Ferrarotti I; Blanco I; Janciauskiene S; Martinez-Delgado B
    J Transl Med; 2015 Jul; 13():211. PubMed ID: 26141700
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cryptic haplotypes of SERPINA1 confer susceptibility to chronic obstructive pulmonary disease.
    Chappell S; Daly L; Morgan K; Guetta Baranes T; Roca J; Rabinovich R; Millar A; Donnelly SC; Keatings V; MacNee W; Stolk J; Hiemstra P; Miniati M; Monti S; O'Connor CM; Kalsheker N
    Hum Mutat; 2006 Jan; 27(1):103-9. PubMed ID: 16278826
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Integrated Genomics Reveals Convergent Transcriptomic Networks Underlying Chronic Obstructive Pulmonary Disease and Idiopathic Pulmonary Fibrosis.
    Kusko RL; Brothers JF; Tedrow J; Pandit K; Huleihel L; Perdomo C; Liu G; Juan-Guardela B; Kass D; Zhang S; Lenburg M; Martinez F; Quackenbush J; Sciurba F; Limper A; Geraci M; Yang I; Schwartz DA; Beane J; Spira A; Kaminski N
    Am J Respir Crit Care Med; 2016 Oct; 194(8):948-960. PubMed ID: 27104832
    [TBL] [Abstract][Full Text] [Related]  

  • 13. SERPINA1 Hepatocyte-Specific Promoter Polymorphism Associate with Chronic Obstructive Pulmonary Disease in a Study of Kashmiri Ancestry Individuals.
    Bashir A; Hazari YM; Bashir S; Hilal N; Banday M; Iqbal MK; Jan TR; Farooq SS; Shah NN; Fazili KM
    Lung; 2018 Aug; 196(4):447-454. PubMed ID: 29804144
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Familial predisposition to chronic obstructive pulmonary disease].
    Rowińska-Zakrzewska E
    Pneumonol Alergol Pol; 2009; 77(4):407-10. PubMed ID: 19722147
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Detecting splicing variants in idiopathic pulmonary fibrosis from non-differentially expressed genes.
    Deng N; Sanchez CG; Lasky JA; Zhu D
    PLoS One; 2013; 8(7):e68352. PubMed ID: 23844188
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Targeted high-throughput sequencing of candidate genes for chronic obstructive pulmonary disease.
    Matsson H; Söderhäll C; Einarsdottir E; Lamontagne M; Gudmundsson S; Backman H; Lindberg A; Rönmark E; Kere J; Sin D; Postma DS; Bossé Y; Lundbäck B; Klar J
    BMC Pulm Med; 2016 Nov; 16(1):146. PubMed ID: 27835950
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantitative expression patterns of multidrug-resistance P-glycoprotein (MDR1) and differentially spliced cystic-fibrosis transmembrane-conductance regulator mRNA transcripts in human epithelia.
    Bremer S; Hoof T; Wilke M; Busche R; Scholte B; Riordan JR; Maass G; Tümmler B
    Eur J Biochem; 1992 May; 206(1):137-49. PubMed ID: 1375156
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Methylation of SERPINA1 gene promoter may predict chronic obstructive pulmonary disease in patients affected by acute coronary syndrome.
    Rotondo JC; Aquila G; Oton-Gonzalez L; Selvatici R; Rizzo P; De Mattei M; Pavasini R; Tognon M; Campo GC; Martini F
    Clin Epigenetics; 2021 Apr; 13(1):79. PubMed ID: 33858475
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Integration of SNP Disease Association, eQTL, and Enrichment Analyses to Identify Risk SNPs and Susceptibility Genes in Chronic Obstructive Pulmonary Disease.
    Liu Y; Huang K; Wang Y; Hu E; Wei B; Song Z; Zou Y; Ge L; Chen L; Li W
    Biomed Res Int; 2020; 2020():3854196. PubMed ID: 33457407
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis of alternative splicing patterns in the cystic fibrosis transmembrane conductance regulator gene using mRNA derived from lymphoblastoid cells of cystic fibrosis patients.
    Bienvenu T; Beldjord C; Chelly J; Fonknechten N; Hubert D; Dusser D; Kaplan JC
    Eur J Hum Genet; 1996; 4(3):127-34. PubMed ID: 8840112
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.