These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
452 related articles for article (PubMed ID: 26480398)
1. Broadband plasmon-induced transparency in terahertz metamaterials via constructive interference of electric and magnetic couplings. Wan M; Song Y; Zhang L; Zhou F Opt Express; 2015 Oct; 23(21):27361-8. PubMed ID: 26480398 [TBL] [Abstract][Full Text] [Related]
2. Broadband plasmon induced transparency in terahertz metamaterials. Zhu Z; Yang X; Gu J; Jiang J; Yue W; Tian Z; Tonouchi M; Han J; Zhang W Nanotechnology; 2013 May; 24(21):214003. PubMed ID: 23618809 [TBL] [Abstract][Full Text] [Related]
3. Hybrid Metal Graphene-Based Tunable Plasmon-Induced Transparency in Terahertz Metasurface. Wang X; Meng H; Deng S; Lao C; Wei Z; Wang F; Tan C; Huang X Nanomaterials (Basel); 2019 Mar; 9(3):. PubMed ID: 30845741 [TBL] [Abstract][Full Text] [Related]
4. Active control of broadband plasmon-induced transparency in a terahertz hybrid metal-graphene metamaterial. Zhang Z; Yang J; He X; Han Y; Zhang J; Huang J; Chen D; Xu S RSC Adv; 2018 Aug; 8(49):27746-27753. PubMed ID: 35542740 [TBL] [Abstract][Full Text] [Related]
5. Role of asymmetric environment on the dark mode excitation in metamaterial analogue of electromagnetically-induced transparency. Dong ZG; Liu H; Xu MX; Li T; Wang SM; Cao JX; Zhu SN; Zhang X Opt Express; 2010 Oct; 18(21):22412-7. PubMed ID: 20941141 [TBL] [Abstract][Full Text] [Related]
6. Coherently controllable terahertz plasmon-induced transparency using a coupled Fano-Lorentzian metasurface. Zhao Z; Gu Z; Ako RT; Zhao H; Sriram S Opt Express; 2020 May; 28(10):15573-15586. PubMed ID: 32403582 [TBL] [Abstract][Full Text] [Related]
7. Manipulating the plasmon-induced transparency in terahertz metamaterials. Li Z; Ma Y; Huang R; Singh R; Gu J; Tian Z; Han J; Zhang W Opt Express; 2011 Apr; 19(9):8912-9. PubMed ID: 21643144 [TBL] [Abstract][Full Text] [Related]
8. Dynamically controllable plasmon induced transparency based on hybrid metal-graphene metamaterials. Yan X; Wang T; Xiao S; Liu T; Hou H; Cheng L; Jiang X Sci Rep; 2017 Oct; 7(1):13917. PubMed ID: 29066769 [TBL] [Abstract][Full Text] [Related]
9. Excitation of dark plasmonic modes in symmetry broken terahertz metamaterials. Chowdhury DR; Su X; Zeng Y; Chen X; Taylor AJ; Azad A Opt Express; 2014 Aug; 22(16):19401-10. PubMed ID: 25321024 [TBL] [Abstract][Full Text] [Related]
10. Plasmonic EIT-like switching in bright-dark-bright plasmon resonators. Chen J; Wang P; Chen C; Lu Y; Ming H; Zhan Q Opt Express; 2011 Mar; 19(7):5970-8. PubMed ID: 21451622 [TBL] [Abstract][Full Text] [Related]
11. Localized terahertz electromagnetically-induced transparency-like phenomenon in a conductively coupled trimer metamolecule. Zhao Z; Zheng X; Peng W; Zhang J; Zhao H; Luo Z; Shi W Opt Express; 2017 Oct; 25(20):24410-24424. PubMed ID: 29041386 [TBL] [Abstract][Full Text] [Related]
13. Electromagnetically induced absorption in a three-resonator metasurface system. Zhang X; Xu N; Qu K; Tian Z; Singh R; Han J; Agarwal GS; Zhang W Sci Rep; 2015 May; 5():10737. PubMed ID: 26023061 [TBL] [Abstract][Full Text] [Related]
14. An ultra-broadband terahertz metamaterial coherent absorber using multilayer electric ring resonator structures based on anti-reflection coating. Du C; Zhou D; Guo HH; Pang YQ; Shi HY; Liu WF; Su JZ; Singh C; Trukhanov S; Trukhanov A; Panina L; Xu Z Nanoscale; 2020 May; 12(17):9769-9775. PubMed ID: 32324192 [TBL] [Abstract][Full Text] [Related]
15. Tailoring the plasmon-induced transparency resonances in terahertz metamaterials. Liu M; Tian Z; Zhang X; Gu J; Ouyang C; Han J; Zhang W Opt Express; 2017 Aug; 25(17):19844-19855. PubMed ID: 29041671 [TBL] [Abstract][Full Text] [Related]
16. Double Fano resonances due to interplay of electric and magnetic plasmon modes in planar plasmonic structure with high sensing sensitivity. Wang J; Fan C; He J; Ding P; Liang E; Xue Q Opt Express; 2013 Jan; 21(2):2236-44. PubMed ID: 23389204 [TBL] [Abstract][Full Text] [Related]
17. A novel planar metamaterial design for electromagnetically induced transparency and slow light. Wang J; Yuan B; Fan C; He J; Ding P; Xue Q; Liang E Opt Express; 2013 Oct; 21(21):25159-66. PubMed ID: 24150357 [TBL] [Abstract][Full Text] [Related]
18. Analogue of electromagnetically induced transparency in a metal-dielectric bilayer terahertz metamaterial. Yue Y; He F; Chen L; Shu F; Jing X; Hong Z Opt Express; 2021 Jul; 29(14):21810-21819. PubMed ID: 34265960 [TBL] [Abstract][Full Text] [Related]
19. Low-loss ultra-high-Q dark mode plasmonic Fano metamaterials. Cao W; Singh R; Al-Naib IA; He M; Taylor AJ; Zhang W Opt Lett; 2012 Aug; 37(16):3366-8. PubMed ID: 23381259 [TBL] [Abstract][Full Text] [Related]
20. Dual-Spectral Plasmon-Induced Transparent Terahertz Metamaterial with Independently Tunable Amplitude and Frequency. Wu T; Wang G; Jia Y; Shao Y; Chen C; Han J; Gao Y; Gao Y Nanomaterials (Basel); 2021 Oct; 11(11):. PubMed ID: 34835641 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]