These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

63 related articles for article (PubMed ID: 26480435)

  • 1. Differentiation of morphotic elements in human blood using optical coherence tomography and a microfluidic setup.
    Ossowski P; Raiter-Smiljanic A; Szkulmowska A; Bukowska D; Wiese M; Derzsi L; Eljaszewicz A; Garstecki P; Wojtkowski M
    Opt Express; 2015 Oct; 23(21):27724-38. PubMed ID: 26480435
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multiple scattering effects in Doppler optical coherence tomography of flowing blood.
    Kalkman J; Bykov AV; Streekstra GJ; van Leeuwen TG
    Phys Med Biol; 2012 Apr; 57(7):1907-17. PubMed ID: 22421380
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Determination of the scattering anisotropy with optical coherence tomography.
    Kodach VM; Faber DJ; van Marle J; van Leeuwen TG; Kalkman J
    Opt Express; 2011 Mar; 19(7):6131-40. PubMed ID: 21451637
    [TBL] [Abstract][Full Text] [Related]  

  • 4. AM-FM techniques in the analysis of optical coherence tomography signals.
    Pitris C; Kartakoullis A; Bousi E
    J Biophotonics; 2009 Jul; 2(6-7):364-9. PubMed ID: 19551909
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Classification of biological micro-objects using optical coherence tomography: in silico study.
    Ossowski P; Wojtkowski M; Munro PR
    Biomed Opt Express; 2017 Aug; 8(8):3606-3626. PubMed ID: 28856039
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Detection of multiple scattering in optical coherence tomography by speckle correlation of angle-dependent B-scans.
    Hillman TR; Curatolo A; Kennedy BF; Sampson DD
    Opt Lett; 2010 Jun; 35(12):1998-2000. PubMed ID: 20548365
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characteristics of time-domain optical coherence tomography profiles generated from blood-saline mixtures.
    Popescu DP; Sowa MG
    Phys Med Biol; 2009 Aug; 54(15):4759-75. PubMed ID: 19622851
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Determination of characteristics of degenerative joint disease using optical coherence tomography and polarization sensitive optical coherence tomography.
    Xie T; Guo S; Zhang J; Chen Z; Peavy GM
    Lasers Surg Med; 2006 Oct; 38(9):852-65. PubMed ID: 16998913
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Crosstalk rejection in parallel optical coherence tomography using spatially incoherent illumination with partially coherent sources.
    Dhalla AH; Migacz JV; Izatt JA
    Opt Lett; 2010 Jul; 35(13):2305-7. PubMed ID: 20596228
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optical coherence tomography for bile and pancreatic duct imaging.
    Testoni PA; Mangiavillano B
    Gastrointest Endosc Clin N Am; 2009 Oct; 19(4):637-53. PubMed ID: 19917469
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Applications of optical coherence tomography in dermatology.
    Gambichler T; Moussa G; Sand M; Sand D; Altmeyer P; Hoffmann K
    J Dermatol Sci; 2005 Nov; 40(2):85-94. PubMed ID: 16139481
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Acousto-optical coherence tomography with a digital holographic detection scheme.
    Benoit a la Guillaume E; Farahi S; Bossy E; Gross M; Ramaz F
    Opt Lett; 2012 Aug; 37(15):3216-8. PubMed ID: 22859137
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Speckle properties of the logarithmically transformed signal in optical coherence tomography.
    Lee P; Gao W; Zhang X
    J Opt Soc Am A Opt Image Sci Vis; 2011 Apr; 28(4):517-22. PubMed ID: 21478944
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Noise statistics of phase-resolved optical coherence tomography imaging: single-and dual-beam-scan Doppler optical coherence tomography.
    Makita S; Jaillon F; Jahan I; Yasuno Y
    Opt Express; 2014 Feb; 22(4):4830-48. PubMed ID: 24663800
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Particles small angle forward-scattered light measurement based on photovoltaic cell microflow cytometer.
    Chen HT; Fu LM; Huang HH; Shu WE; Wang YN
    Electrophoresis; 2014 Feb; 35(2-3):337-44. PubMed ID: 24002889
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Complex wavefront shaping for optimal depth-selective focusing in optical coherence tomography.
    Jang J; Lim J; Yu H; Choi H; Ha J; Park JH; Oh WY; Jang W; Lee S; Park Y
    Opt Express; 2013 Feb; 21(3):2890-902. PubMed ID: 23481747
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recent developments in optical coherence tomography for imaging the retina.
    van Velthoven ME; Faber DJ; Verbraak FD; van Leeuwen TG; de Smet MD
    Prog Retin Eye Res; 2007 Jan; 26(1):57-77. PubMed ID: 17158086
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Wavelength-dependent scattering in spectroscopic optical coherence tomography.
    Xu C; Carney P; Boppart S
    Opt Express; 2005 Jul; 13(14):5450-62. PubMed ID: 19498540
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Towards model-based adaptive optics optical coherence tomography.
    Verstraete HR; Cense B; Bilderbeek R; Verhaegen M; Kalkman J
    Opt Express; 2014 Dec; 22(26):32406-18. PubMed ID: 25607203
    [TBL] [Abstract][Full Text] [Related]  

  • 20. State-of-the-art retinal optical coherence tomography.
    Drexler W; Fujimoto JG
    Prog Retin Eye Res; 2008 Jan; 27(1):45-88. PubMed ID: 18036865
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.