These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

63 related articles for article (PubMed ID: 26480435)

  • 21. Optical identification based on time domain optical coherence tomography.
    Gandhi V; Semenov D; Honkanen S; Hauta-Kasari M
    Appl Opt; 2015 Sep; 54(25):7514-9. PubMed ID: 26368871
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Optical biopsy in human gastrointestinal tissue using optical coherence tomography.
    Tearney GJ; Brezinski ME; Southern JF; Bouma BE; Boppart SA; Fujimoto JG
    Am J Gastroenterol; 1997 Oct; 92(10):1800-4. PubMed ID: 9382040
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Imaging and characterization of bioengineered blood vessels within a bioreactor using free-space and catheter-based OCT.
    Gurjarpadhye AA; Whited BM; Sampson A; Niu G; Sharma KS; Vogt WC; Wang G; Xu Y; Soker S; Rylander MN; Rylander CG
    Lasers Surg Med; 2013 Aug; 45(6):391-400. PubMed ID: 23740768
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Superlocalization of single molecules and nanoparticles in high-fidelity optical imaging microfluidic devices.
    Luo Y; Sun W; Liu C; Wang G; Fang N
    Anal Chem; 2011 Jul; 83(13):5073-7. PubMed ID: 21648954
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Intrasweep phase-sensitive optical coherence tomography for noncontact optical photoacoustic imaging.
    Blatter C; Grajciar B; Zou P; Wieser W; Verhoef AJ; Huber R; Leitgeb RA
    Opt Lett; 2012 Nov; 37(21):4368-70. PubMed ID: 23114298
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Multiple and dependent scattering effects in Doppler optical coherence tomography.
    Kalkman J; Bykov AV; Faber DJ; van Leeuwen TG
    Opt Express; 2010 Feb; 18(4):3883-92. PubMed ID: 20389399
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Non-labeled lensless micro-endoscopic approach for cellular imaging through highly scattering media.
    Wagner O; Pandya A; Chemla Y; Pinhas H; Schelkanova I; Shahmoon A; Mandel Y; Douplik A; Zalevsky Z
    Biosci Rep; 2018 Feb; 38(1):. PubMed ID: 29162669
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Imaging adherent cells in the microfluidic channel hidden by flowing RBCs as occluding objects by a holographic method.
    Bianco V; Merola F; Miccio L; Memmolo P; Gennari O; Paturzo M; Netti PA; Ferraro P
    Lab Chip; 2014 Jul; 14(14):2499-504. PubMed ID: 24852283
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Feasibility of optical coherence tomography imaging to characterize renal neoplasms: limitations in resolution and depth of penetration.
    Linehan JA; Bracamonte ER; Hariri LP; Sokoloff MH; Rice PS; Barton JK; Nguyen MM
    BJU Int; 2011 Dec; 108(11):1820-4. PubMed ID: 21592299
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Confocal backscattering-based detection of leukemic cells in flowing blood samples.
    Greiner C; Hunter M; Rius F; Huang P; Georgakoudi I
    Cytometry A; 2011 Oct; 79(10):874-83. PubMed ID: 21638765
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Influence of tooth-surface hydration conditions on optical coherence-tomography imaging.
    Shimamura Y; Murayama R; Kurokawa H; Miyazaki M; Mihata Y; Kmaguchi S
    J Dent; 2011 Aug; 39(8):572-7. PubMed ID: 21726596
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Choroidal granulomas visualized by enhanced depth imaging optical coherence tomography.
    Invernizzi A; Mapelli C; Viola F; Cigada M; Cimino L; Ratiglia R; Staurenghi G; Gupta A
    Retina; 2015 Mar; 35(3):525-31. PubMed ID: 25105317
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Structural Characterization of a Capillary Microfluidic Chip Using Microreflectance.
    Lastras-Martínez LF; Balderas-Navarro RE; Castro-García R; Hernández-Vidales K; Almendarez-Rodríguez J; Herrera-Jasso R; Prinz A; Bergmair I
    Appl Spectrosc; 2017 Jun; 71(6):1357-1362. PubMed ID: 27756862
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Phase-dispersion optical tomography.
    Yang C; Wax A; Dasari RR; Feld MS
    Opt Lett; 2001 May; 26(10):686-8. PubMed ID: 18040420
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Universal photonics tomography.
    Gaur P; Grieco A; Alshamrani N; Almutairi D; Fainman Y
    Opt Express; 2022 May; 30(11):19222-19235. PubMed ID: 36221706
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Imaging human blood cells in vivo with oblique back-illumination capillaroscopy.
    McKay GN; Mohan N; Durr NJ
    Biomed Opt Express; 2020 May; 11(5):2373-2382. PubMed ID: 32499930
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Optical phase-space distributions for low-coherence light.
    Wax A; Bali S; Thomas JE
    Opt Lett; 1999 Sep; 24(17):1188-90. PubMed ID: 18073979
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Microwave Imaging under Oblique Illumination.
    Meng Q; Xu K; Shen F; Zhang B; Ye D; Huangfu J; Li C; Ran L
    Sensors (Basel); 2016 Jul; 16(7):. PubMed ID: 27399706
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Chronocyclic tomography for measuring the amplitude and phase structure of optical pulses.
    Beck M; Raymer MG; Walmsley IA; Wong V
    Opt Lett; 1993 Dec; 18(23):2041. PubMed ID: 19829485
    [No Abstract]   [Full Text] [Related]  

  • 40. Advances in Microfluidics for Single Red Blood Cell Analysis.
    Grigorev GV; Lebedev AV; Wang X; Qian X; Maksimov GV; Lin L
    Biosensors (Basel); 2023 Jan; 13(1):. PubMed ID: 36671952
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.