BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

246 related articles for article (PubMed ID: 26480438)

  • 21. Quantitative nanoscale temperature mapping across the multi-quantum well of a light-emitting diode in operation using vacuum null-point scanning thermal microscopy to evaluate local energy conversion efficiency.
    Shin H; Liu S; Kwon O
    RSC Adv; 2023 Nov; 13(48):34230-34238. PubMed ID: 38019987
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Quantitative Measurement of Thermal Conductivity by SThM Technique: Measurements, Calibration Protocols and Uncertainty Evaluation.
    Fleurence N; Demeyer S; Allard A; Douri S; Hay B
    Nanomaterials (Basel); 2023 Aug; 13(17):. PubMed ID: 37686932
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Near field phase mapping exploiting intrinsic oscillations of aperture NSOM probe.
    Stern L; Desiatov B; Goykhman I; Lerman GM; Levy U
    Opt Express; 2011 Jun; 19(13):12014-20. PubMed ID: 21716436
    [TBL] [Abstract][Full Text] [Related]  

  • 24. On the Limits of Scanning Thermal Microscopy of Ultrathin Films.
    Metzke C; Frammelsberger W; Weber J; Kühnel F; Zhu K; Lanza M; Benstetter AG
    Materials (Basel); 2020 Jan; 13(3):. PubMed ID: 31978971
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Application of scanning thermal microscopy for investigation of thermal boundaries in multilayered photonic structures.
    Juszczyk J; Krzywiecki M; Kruszka R; Bodzenta J
    Ultramicroscopy; 2013 Dec; 135():95-8. PubMed ID: 23954495
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Combined scanning probe electronic and thermal characterization of an indium arsenide nanowire.
    Wagner T; Menges F; Riel H; Gotsmann B; Stemmer A
    Beilstein J Nanotechnol; 2018; 9():129-136. PubMed ID: 29441258
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Mapping nanoscale thermal transfer in-liquid environment-immersion scanning thermal microscopy.
    Tovee PD; Kolosov OV
    Nanotechnology; 2013 Nov; 24(46):465706. PubMed ID: 24164803
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Scanning Thermal Microscopy of Ultrathin Films: Numerical Studies Regarding Cantilever Displacement, Thermal Contact Areas, Heat Fluxes, and Heat Distribution.
    Metzke C; Kühnel F; Weber J; Benstetter G
    Nanomaterials (Basel); 2021 Feb; 11(2):. PubMed ID: 33669205
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Quantitative Characterization of Local Thermal Properties in Thermoelectric Ceramics Using "Jumping-Mode" Scanning Thermal Microscopy.
    Alikin D; Zakharchuk K; Xie W; Romanyuk K; Pereira MJ; Arias-Serrano BI; Weidenkaff A; Kholkin A; Kovalevsky AV; Tselev A
    Small Methods; 2023 Apr; 7(4):e2201516. PubMed ID: 36775977
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Geometric Nanophotonics: Light Management in Single Nanowires through Morphology.
    Kim S; Cahoon JF
    Acc Chem Res; 2019 Dec; 52(12):3511-3520. PubMed ID: 31799833
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Dimension- and shape-dependent thermal transport in nano-patterned thin films investigated by scanning thermal microscopy.
    Ge Y; Zhang Y; Weaver JMR; Dobson PS
    Nanotechnology; 2017 Dec; 28(48):485706. PubMed ID: 29035274
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Three-dimensional mapping of optical near field of a nanoscale bowtie antenna.
    Guo R; Kinzel EC; Li Y; Uppuluri SM; Raman A; Xu X
    Opt Express; 2010 Mar; 18(5):4961-71. PubMed ID: 20389507
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Quantitative temperature distribution measurements by non-contact scanning thermal microscopy using Wollaston probes under ambient conditions.
    Zhang Y; Zhu W; Han L; Borca-Tasciuc T
    Rev Sci Instrum; 2020 Jan; 91(1):014901. PubMed ID: 32012522
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Direct temperature mapping of nanoscale plasmonic devices.
    Desiatov B; Goykhman I; Levy U
    Nano Lett; 2014 Feb; 14(2):648-52. PubMed ID: 24422562
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Carrier density distribution in silicon nanowires investigated by scanning thermal microscopy and Kelvin probe force microscopy.
    Wielgoszewski G; Pałetko P; Tomaszewski D; Zaborowski M; Jóźwiak G; Kopiec D; Gotszalk T; Grabiec P
    Micron; 2015 Dec; 79():93-100. PubMed ID: 26381074
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Reciprocity theory of apertureless scanning near-field optical microscopy with point-dipole probes.
    Esslinger M; Vogelgesang R
    ACS Nano; 2012 Sep; 6(9):8173-82. PubMed ID: 22897563
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Temperature-dependent quantitative 3omega scanning thermal microscopy: Local thermal conductivity changes in NiTi microstructures induced by martensite-austenite phase transition.
    Chirtoc M; Gibkes J; Wernhardt R; Pelzl J; Wieck A
    Rev Sci Instrum; 2008 Sep; 79(9):093703. PubMed ID: 19044421
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Temperature-dependent capillary forces at nano-contacts for estimating the heat conduction through a water meniscus.
    Assy A; Gomès S
    Nanotechnology; 2015 Sep; 26(35):355401. PubMed ID: 26245265
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Near-field second-harmonic generation.
    Zayats AV; Smolyaninov II
    Philos Trans A Math Phys Eng Sci; 2004 Apr; 362(1817):843-60. PubMed ID: 15306497
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Probing Temperature-Induced Plasmonic Nonlinearity: Unveiling Opto-Thermal Effects on Light Absorption and Near-Field Enhancement.
    Lee H; Im S; Lee C; Lee H; Chu SW; Ho AH; Kim D
    Nano Lett; 2024 Mar; 24(12):3598-3605. PubMed ID: 38407029
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.