These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

231 related articles for article (PubMed ID: 26480438)

  • 81. Multi-frequency near-field scanning optical microscopy.
    Kohlgraf-Owens DC; Greusard L; Sukhov S; Wilde YD; Dogariu A
    Nanotechnology; 2014 Jan; 25(3):035203. PubMed ID: 24346240
    [TBL] [Abstract][Full Text] [Related]  

  • 82. AFM-thermoreflectance for simultaneous measurements of the topography and temperature.
    Rho J; Lim M; Lee SS; Lee BJ
    RSC Adv; 2018 Aug; 8(49):27616-27622. PubMed ID: 35542752
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Contactless near-field scanning thermoreflectance imaging.
    Ezugwu S; Kazemian S; Choi DW; Fanchini G
    Nanoscale; 2017 Mar; 9(12):4097-4106. PubMed ID: 28276562
    [TBL] [Abstract][Full Text] [Related]  

  • 84. One-Dimensional Dielectric/Metallic Hybrid Materials for Photonic Applications.
    Li YJ; Xiong X; Zou CL; Ren XF; Zhao YS
    Small; 2015 Aug; 11(31):3728-43. PubMed ID: 25963844
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Linear and Nonlinear Optical Spectroscopy at the Nanoscale with Photoinduced Force Microscopy.
    Jahng J; Fishman DA; Park S; Nowak DB; Morrison WA; Wickramasinghe HK; Potma EO
    Acc Chem Res; 2015 Oct; 48(10):2671-9. PubMed ID: 26449563
    [TBL] [Abstract][Full Text] [Related]  

  • 86. High Spatial Resolution Thermal Mapping of Volatile Switching in NbO
    Nandi SK; Puyoo E; Nath SK; Albertini D; Baboux N; Das SK; Ratcliff T; Elliman RG
    ACS Appl Mater Interfaces; 2022 Jun; 14(25):29025-29031. PubMed ID: 35700145
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Probing photonic and optoelectronic structures by apertureless scanning near-field optical microscopy.
    Bachelot R; Lerondel G; Blaize S; Aubert S; Bruyant A; Royer P
    Microsc Res Tech; 2004 Aug; 64(5-6):441-52. PubMed ID: 15549693
    [TBL] [Abstract][Full Text] [Related]  

  • 88. A full vectorial mapping of nanophotonic light fields.
    le Feber B; Sipe JE; Wulf M; Kuipers L; Rotenberg N
    Light Sci Appl; 2019; 8():28. PubMed ID: 30854200
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Investigation of thermal effects in through-silicon vias using scanning thermal microscopy.
    Wielgoszewski G; Jóźwiak G; Babij M; Baraniecki T; Geer R; Gotszalk T
    Micron; 2014 Nov; 66():63-8. PubMed ID: 25080278
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Local observation and spectroscopy of optical modes in an active photonic-crystal microcavity.
    Louvion N; Gérard D; Mouette J; de Fornel F; Seassal C; Letartre X; Rahmani A; Callard S
    Phys Rev Lett; 2005 Mar; 94(11):113907. PubMed ID: 15903862
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Near-field transmission matrix microscopy for mapping high-order eigenmodes of subwavelength nanostructures.
    Seo E; Jin YH; Choi W; Jo Y; Lee S; Song KD; Ahn J; Park QH; Kim MK; Choi W
    Nat Commun; 2020 May; 11(1):2575. PubMed ID: 32444615
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Towards phonon photonics: scattering-type near-field optical microscopy reveals phonon-enhanced near-field interaction.
    Hillenbrand R
    Ultramicroscopy; 2004 Aug; 100(3-4):421-7. PubMed ID: 15231334
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Thermal scanning probe microscopy in the development of pharmaceuticals.
    Dai X; Moffat JG; Wood J; Reading M
    Adv Drug Deliv Rev; 2012 Apr; 64(5):449-60. PubMed ID: 21856345
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Focussed ion beam machined cantilever aperture probes for near-field optical imaging.
    Jin EX; Xu X
    J Microsc; 2008 Mar; 229(Pt 3):503-11. PubMed ID: 18331502
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Coupling efficiency of probes in emission-mode scanning near-field optical microscopy.
    Alvarez L; Xiao M
    J Microsc; 2008 Feb; 229(Pt 2):371-6. PubMed ID: 18304099
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Evanescent field excitation and measurement of dye fluorescence in a metallic probe near-field scanning optical microscope.
    Hayazawa N; Inouye Y; Kawata S
    J Microsc; 1999; 194(Pt 2-3):472-6. PubMed ID: 11388288
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Enhanced light confinement in a near-field optical probe with a triangular aperture.
    Naber A; Molenda D; Fischer UC; Maas HJ; Höppener C; Lu N; Fuchs H
    Phys Rev Lett; 2002 Nov; 89(21):210801. PubMed ID: 12443400
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Study of light-absorbing crystal birefringence and electrical modulation mechanisms for coupled thermal-optical effects.
    Zhou J; He Z; Ma Y; Dong S
    Appl Opt; 2014 Sep; 53(27):6243-55. PubMed ID: 25322104
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Fluorescent nanoscale detection of biotin-streptavidin interaction using near-field scanning optical microscopy.
    Park HK; Gokarna A; Hulme JP; Park HG; Chung BH
    Nanotechnology; 2008 Jun; 19(23):235103. PubMed ID: 21825778
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Microfabricated thermal conductivity sensor: a high resolution tool for quantitative thermal property measurement of biomaterials and solutions.
    Liang XM; Ding W; Chen HH; Shu Z; Zhao G; Zhang HF; Gao D
    Biomed Microdevices; 2011 Oct; 13(5):923-8. PubMed ID: 21710370
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.