BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 26480892)

  • 1. InSAR analysis of surface deformation over permafrost to estimate active layer thickness based on one-dimensional heat transfer model of soils.
    Li Z; Zhao R; Hu J; Wen L; Feng G; Zhang Z; Wang Q
    Sci Rep; 2015 Oct; 5():15542. PubMed ID: 26480892
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Permafrost Deformation Monitoring Along the Qinghai-Tibet Plateau Engineering Corridor Using InSAR Observations with Multi-Sensor SAR Datasets from 1997-2018.
    Zhang Z; Wang M; Wu Z; Liu X
    Sensors (Basel); 2019 Dec; 19(23):. PubMed ID: 31810246
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluating Permafrost Degradation in the Tuotuo River Basin by MT-InSAR and LSTM Methods.
    Zhou P; Liu W; Zhang X; Wang J
    Sensors (Basel); 2023 Jan; 23(3):. PubMed ID: 36772259
    [TBL] [Abstract][Full Text] [Related]  

  • 4. InSAR time-series deformation forecasting surrounding Salt Lake using deep transformer models.
    Wang J; Li C; Li L; Huang Z; Wang C; Zhang H; Zhang Z
    Sci Total Environ; 2023 Feb; 858(Pt 2):159744. PubMed ID: 36328256
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Impact process and mechanism of summertime rainfall on thermal-moisture regime of active layer in permafrost regions of central Qinghai-Tibet Plateau.
    Zhang M; Wen Z; Li D; Chou Y; Zhou Z; Zhou F; Lei B
    Sci Total Environ; 2021 Nov; 796():148970. PubMed ID: 34274663
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Monitoring the Degradation of Island Permafrost Using Time-Series InSAR Technique: A Case Study of Heihe, China.
    Wang S; Xu B; Shan W; Shi J; Li Z; Feng G
    Sensors (Basel); 2019 Mar; 19(6):. PubMed ID: 30893773
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Permafrost Dynamics Observatory-Part I: Postprocessing and Calibration Methods of UAVSAR L-Band InSAR Data for Seasonal Subsidence Estimation.
    Michaelides RJ; Chen RH; Zhao Y; Schaefer K; Parsekian AD; Sullivan T; Moghaddam M; Zebker HA; Liu L; Xu X; Chen J
    Earth Space Sci; 2021 Jul; 8(7):e2020EA001630. PubMed ID: 34435080
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Using MODIS Land Surface Temperatures for Permafrost Thermal Modeling in Beiluhe Basin on the Qinghai-Tibet Plateau.
    Li A; Xia C; Bao C; Yin G
    Sensors (Basel); 2019 Sep; 19(19):. PubMed ID: 31569750
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thermal regime of warm-dry permafrost in relation to ground surface temperature in the Source Areas of the Yangtze and Yellow rivers on the Qinghai-Tibet Plateau, SW China.
    Luo D; Jin H; Wu Q; Bense VF; He R; Ma Q; Gao S; Jin X; Lü L
    Sci Total Environ; 2018 Mar; 618():1033-1045. PubMed ID: 29092743
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Research on Time Series Monitoring of Surface Deformation in Tongliao Urban Area Based on SBAS-PS-DS-InSAR.
    Chen Y; Ding C; Huang P; Yin B; Tan W; Qi Y; Xu W; Du S
    Sensors (Basel); 2024 Feb; 24(4):. PubMed ID: 38400328
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spatiotemporal characteristics of hydrothermal processes of the active layer on the central and northern Qinghai-Tibet plateau.
    Yuan L; Zhao L; Li R; Hu G; Du E; Qiao Y; Ma L
    Sci Total Environ; 2020 Apr; 712():136392. PubMed ID: 31931221
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interannual and seasonal variations of permafrost thaw depth on the Qinghai-Tibetan Plateau: A comparative study using long short-term memory, convolutional neural networks, and random forest.
    Liu Q; Niu J; Lu P; Dong F; Zhou F; Meng X; Xu W; Li S; Hu BX
    Sci Total Environ; 2022 Sep; 838(Pt 1):155886. PubMed ID: 35569652
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spatial variations and controlling factors of ground ice isotopes in permafrost areas of the central Qinghai-Tibet Plateau.
    Wang W; Wu T; Chen Y; Li R; Xie C; Qiao Y; Zhu X; Hao J; Ni J
    Sci Total Environ; 2019 Oct; 688():542-554. PubMed ID: 31254820
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Small-Baseline Approach for Monitoring the Freezing and Thawing Deformation of Permafrost on the Beiluhe Basin, Tibetan Plateau Using TerraSAR-X and Sentinel-1 Data.
    Wang J; Wang C; Zhang H; Tang Y; Zhang X; Zhang Z
    Sensors (Basel); 2020 Aug; 20(16):. PubMed ID: 32785061
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of desertification on frozen soil on the Qinghai-Tibet plateau.
    Wang L; Wu Q; Jiang G
    Sci Total Environ; 2020 Apr; 711():134640. PubMed ID: 31812423
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of local factors and climate on permafrost conditions and distribution in Beiluhe basin, Qinghai-Tibet Plateau, China.
    Yin G; Niu F; Lin Z; Luo J; Liu M
    Sci Total Environ; 2017 Mar; 581-582():472-485. PubMed ID: 28057338
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Unraveling of permafrost hydrological variabilities on Central Qinghai-Tibet Plateau using stable isotopic technique.
    Yang Y; Wu Q; Hou Y; Zhang Z; Zhan J; Gao S; Jin H
    Sci Total Environ; 2017 Dec; 605-606():199-210. PubMed ID: 28667847
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Key evidence of the role of desertification in protecting the underlying permafrost in the Qinghai-Tibet Plateau.
    Xie S; Qu J; Lai Y; Xu X; Pang Y
    Sci Rep; 2015 Oct; 5():15152. PubMed ID: 26468777
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hydrochemical characteristics of ground ice in permafrost regions of the Qinghai-Tibet Plateau.
    Wang W; Wu T; Zhao L; Li R; Xie C; Qiao Y; Zhang H; Zhu X; Yang S; Qin Y; Hao J
    Sci Total Environ; 2018 Jun; 626():366-376. PubMed ID: 29353782
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of desertification on permafrost environment in Qinghai-Tibetan Plateau.
    Chen L; Yu W; Han F; Lu Y; Zhang T
    J Environ Manage; 2020 May; 262():110302. PubMed ID: 32250787
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.