BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

232 related articles for article (PubMed ID: 26481360)

  • 1. Secondary structure encodes a cooperative tertiary folding funnel in the Azoarcus ribozyme.
    Mustoe AM; Al-Hashimi HM; Brooks CL
    Nucleic Acids Res; 2016 Jan; 44(1):402-12. PubMed ID: 26481360
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cooperative tertiary interaction network guides RNA folding.
    Behrouzi R; Roh JH; Kilburn D; Briber RM; Woodson SA
    Cell; 2012 Apr; 149(2):348-57. PubMed ID: 22500801
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Assembly of core helices and rapid tertiary folding of a small bacterial group I ribozyme.
    Rangan P; Masquida B; Westhof E; Woodson SA
    Proc Natl Acad Sci U S A; 2003 Feb; 100(4):1574-9. PubMed ID: 12574513
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tertiary interactions determine the accuracy of RNA folding.
    Chauhan S; Woodson SA
    J Am Chem Soc; 2008 Jan; 130(4):1296-303. PubMed ID: 18179212
    [TBL] [Abstract][Full Text] [Related]  

  • 5. How do metal ions direct ribozyme folding?
    Denesyuk NA; Thirumalai D
    Nat Chem; 2015 Oct; 7(10):793-801. PubMed ID: 26391078
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Topological constraints are major determinants of tRNA tertiary structure and dynamics and provide basis for tertiary folding cooperativity.
    Mustoe AM; Brooks CL; Al-Hashimi HM
    Nucleic Acids Res; 2014 Oct; 42(18):11792-804. PubMed ID: 25217593
    [TBL] [Abstract][Full Text] [Related]  

  • 7. RNA tertiary interactions mediate native collapse of a bacterial group I ribozyme.
    Chauhan S; Caliskan G; Briber RM; Perez-Salas U; Rangan P; Thirumalai D; Woodson SA
    J Mol Biol; 2005 Nov; 353(5):1199-209. PubMed ID: 16214167
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular crowding overcomes the destabilizing effects of mutations in a bacterial ribozyme.
    Lee HT; Kilburn D; Behrouzi R; Briber RM; Woodson SA
    Nucleic Acids Res; 2015 Jan; 43(2):1170-6. PubMed ID: 25541198
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural rearrangements linked to global folding pathways of the Azoarcus group I ribozyme.
    Chauhan S; Behrouzi R; Rangan P; Woodson SA
    J Mol Biol; 2009 Mar; 386(4):1167-78. PubMed ID: 19154736
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An alternative route for the folding of large RNAs: apparent two-state folding by a group II intron ribozyme.
    Su LJ; Brenowitz M; Pyle AM
    J Mol Biol; 2003 Dec; 334(4):639-52. PubMed ID: 14636593
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Concerted kinetic folding of a multidomain ribozyme with a disrupted loop-receptor interaction.
    Treiber DK; Williamson JR
    J Mol Biol; 2001 Jan; 305(1):11-21. PubMed ID: 11114243
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of the Azoarcus ribozyme: tight binding to guanosine and substrate by an unusually small group I ribozyme.
    Kuo LY; Davidson LA; Pico S
    Biochim Biophys Acta; 1999 Dec; 1489(2-3):281-92. PubMed ID: 10673029
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Azoarcus group I intron ribozyme misfolds and is accelerated for refolding by ATP-dependent RNA chaperone proteins.
    Sinan S; Yuan X; Russell R
    J Biol Chem; 2011 Oct; 286(43):37304-12. PubMed ID: 21878649
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Compaction of a bacterial group I ribozyme coincides with the assembly of core helices.
    Perez-Salas UA; Rangan P; Krueger S; Briber RM; Thirumalai D; Woodson SA
    Biochemistry; 2004 Feb; 43(6):1746-53. PubMed ID: 14769052
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Perturbation of the hierarchical folding of a large RNA by the destabilization of its Scaffold's tertiary structure.
    Shcherbakova I; Brenowitz M
    J Mol Biol; 2005 Nov; 354(2):483-96. PubMed ID: 16242711
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A chemical phylogeny of group I introns based upon interference mapping of a bacterial ribozyme.
    Strauss-Soukup JK; Strobel SA
    J Mol Biol; 2000 Sep; 302(2):339-58. PubMed ID: 10970738
    [TBL] [Abstract][Full Text] [Related]  

  • 17. New pathways in folding of the Tetrahymena group I RNA enzyme.
    Russell R; Herschlag D
    J Mol Biol; 1999 Sep; 291(5):1155-67. PubMed ID: 10518951
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Monovalent ion-mediated folding of the Tetrahymena thermophila ribozyme.
    Shcherbakova I; Gupta S; Chance MR; Brenowitz M
    J Mol Biol; 2004 Oct; 342(5):1431-42. PubMed ID: 15364572
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Probing the folding landscape of the Tetrahymena ribozyme: commitment to form the native conformation is late in the folding pathway.
    Russell R; Herschlag D
    J Mol Biol; 2001 May; 308(5):839-51. PubMed ID: 11352576
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Increased ribozyme activity in crowded solutions.
    Desai R; Kilburn D; Lee HT; Woodson SA
    J Biol Chem; 2014 Jan; 289(5):2972-7. PubMed ID: 24337582
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.