BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 26481419)

  • 1. Structural insights into the mechanism of Escherichia coli YmdB: A 2'-O-acetyl-ADP-ribose deacetylase.
    Zhang W; Wang C; Song Y; Shao C; Zhang X; Zang J
    J Struct Biol; 2015 Dec; 192(3):478-486. PubMed ID: 26481419
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hydrolysis of O-acetyl-ADP-ribose isomers by ADP-ribosylhydrolase 3.
    Kasamatsu A; Nakao M; Smith BC; Comstock LR; Ono T; Kato J; Denu JM; Moss J
    J Biol Chem; 2011 Jun; 286(24):21110-7. PubMed ID: 21498885
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural and functional analysis of
    Zapata-Pérez R; Gil-Ortiz F; Martínez-Moñino AB; García-Saura AG; Juanhuix J; Sánchez-Ferrer Á
    Open Biol; 2017 Apr; 7(4):. PubMed ID: 28446708
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular mechanism of ADP-ribose hydrolysis by human NUDT5 from structural and kinetic studies.
    Zha M; Guo Q; Zhang Y; Yu B; Ou Y; Zhong C; Ding J
    J Mol Biol; 2008 Jun; 379(3):568-78. PubMed ID: 18462755
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analysis of O-acetyl-ADP-ribose as a target for Nudix ADP-ribose hydrolases.
    Rafty LA; Schmidt MT; Perraud AL; Scharenberg AM; Denu JM
    J Biol Chem; 2002 Dec; 277(49):47114-22. PubMed ID: 12370179
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of macrodomain proteins as novel O-acetyl-ADP-ribose deacetylases.
    Chen D; Vollmar M; Rossi MN; Phillips C; Kraehenbuehl R; Slade D; Mehrotra PV; von Delft F; Crosthwaite SK; Gileadi O; Denu JM; Ahel I
    J Biol Chem; 2011 Apr; 286(15):13261-71. PubMed ID: 21257746
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Function and metabolism of sirtuin metabolite O-acetyl-ADP-ribose.
    Tong L; Denu JM
    Biochim Biophys Acta; 2010 Aug; 1804(8):1617-25. PubMed ID: 20176146
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Combined computational and experimental analysis of a complex of ribonuclease III and the regulatory macrodomain protein, YmdB.
    Paudyal S; Alfonso-Prieto M; Carnevale V; Redhu SK; Klein ML; Nicholson AW
    Proteins; 2015 Mar; 83(3):459-72. PubMed ID: 25546632
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transition-state analysis of 2-O-acetyl-ADP-ribose hydrolysis by human macrodomain 1.
    Hirsch BM; Burgos ES; Schramm VL
    ACS Chem Biol; 2014 Oct; 9(10):2255-62. PubMed ID: 25051211
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The structure of ADP-ribose pyrophosphatase reveals the structural basis for the versatility of the Nudix family.
    Gabelli SB; Bianchet MA; Bessman MJ; Amzel LM
    Nat Struct Biol; 2001 May; 8(5):467-72. PubMed ID: 11323725
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Orphan macrodomain protein (human C6orf130) is an O-acyl-ADP-ribose deacylase: solution structure and catalytic properties.
    Peterson FC; Chen D; Lytle BL; Rossi MN; Ahel I; Denu JM; Volkman BF
    J Biol Chem; 2011 Oct; 286(41):35955-35965. PubMed ID: 21849506
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Substrate specificity and kinetic mechanism of the Sir2 family of NAD+-dependent histone/protein deacetylases.
    Borra MT; Langer MR; Slama JT; Denu JM
    Biochemistry; 2004 Aug; 43(30):9877-87. PubMed ID: 15274642
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Crystal structures of human NUDT5 reveal insights into the structural basis of the substrate specificity.
    Zha M; Zhong C; Peng Y; Hu H; Ding J
    J Mol Biol; 2006 Dec; 364(5):1021-33. PubMed ID: 17052728
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Silent information regulator 2 family of NAD- dependent histone/protein deacetylases generates a unique product, 1-O-acetyl-ADP-ribose.
    Tanner KG; Landry J; Sternglanz R; Denu JM
    Proc Natl Acad Sci U S A; 2000 Dec; 97(26):14178-82. PubMed ID: 11106374
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Crystal structures of penicillin acylase enzyme-substrate complexes: structural insights into the catalytic mechanism.
    McVey CE; Walsh MA; Dodson GG; Wilson KS; Brannigan JA
    J Mol Biol; 2001 Oct; 313(1):139-50. PubMed ID: 11601852
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular basis for the MacroD1-mediated hydrolysis of ADP-ribosylation.
    Yang X; Ma Y; Li Y; Dong Y; Yu LL; Wang H; Guo L; Wu C; Yu X; Liu X
    DNA Repair (Amst); 2020 Oct; 94():102899. PubMed ID: 32683309
    [TBL] [Abstract][Full Text] [Related]  

  • 17. ADP-Ribose Pyrophosphatase Reaction in Crystalline State Conducted by Consecutive Binding of Two Manganese(II) Ions as Cofactors.
    Furuike Y; Akita Y; Miyahara I; Kamiya N
    Biochemistry; 2016 Mar; 55(12):1801-12. PubMed ID: 26979298
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure and mechanism of MT-ADPRase, a nudix hydrolase from Mycobacterium tuberculosis.
    Kang LW; Gabelli SB; Cunningham JE; O'Handley SF; Amzel LM
    Structure; 2003 Aug; 11(8):1015-23. PubMed ID: 12906832
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanism of the Escherichia coli ADP-ribose pyrophosphatase, a Nudix hydrolase.
    Gabelli SB; Bianchet MA; Ohnishi Y; Ichikawa Y; Bessman MJ; Amzel LM
    Biochemistry; 2002 Jul; 41(30):9279-85. PubMed ID: 12135348
    [TBL] [Abstract][Full Text] [Related]  

  • 20. One-step, nonenzymatic synthesis of O-acetyl-ADP-ribose and analogues from NAD and carboxylates.
    Szczepankiewicz BG; Koppetsch KJ; Perni RB
    J Org Chem; 2011 Aug; 76(16):6465-74. PubMed ID: 21639110
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.