BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 2648158)

  • 1. Alternative splicing of human dystrophin mRNA generates isoforms at the carboxy terminus.
    Feener CA; Koenig M; Kunkel LM
    Nature; 1989 Apr; 338(6215):509-11. PubMed ID: 2648158
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A case of Becker muscular dystrophy resulting from the skipping of four contiguous exons (71-74) of the dystrophin gene during mRNA maturation.
    Patria SY; Alimsardjono H; Nishio H; Takeshima Y; Nakamura H; Matsuo M
    Proc Assoc Am Physicians; 1996 Jul; 108(4):308-14. PubMed ID: 8863344
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Towards a therapeutic inhibition of dystrophin exon 23 splicing in mdx mouse muscle induced by antisense oligoribonucleotides (splicomers): target sequence optimisation using oligonucleotide arrays.
    Graham IR; Hill VJ; Manoharan M; Inamati GB; Dickson G
    J Gene Med; 2004 Oct; 6(10):1149-58. PubMed ID: 15386737
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Developmental and muscle-specific regulation of avian fast skeletal troponin T isoform expression by mRNA splicing.
    Bucher EA; de la Brousse FC; Emerson CP
    J Biol Chem; 1989 Jul; 264(21):12482-91. PubMed ID: 2745456
    [TBL] [Abstract][Full Text] [Related]  

  • 5. New mdx mutation disrupts expression of muscle and nonmuscle isoforms of dystrophin.
    Cox GA; Phelps SF; Chapman VM; Chamberlain JS
    Nat Genet; 1993 May; 4(1):87-93. PubMed ID: 8099842
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In vitro splicing analysis showed that availability of a cryptic splice site is not a determinant for alternative splicing patterns caused by +1G-->A mutations in introns of the dystrophin gene.
    Habara Y; Takeshima Y; Awano H; Okizuka Y; Zhang Z; Saiki K; Yagi M; Matsuo M
    J Med Genet; 2009 Aug; 46(8):542-7. PubMed ID: 19001018
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transcription of the dystrophin gene in human muscle and non-muscle tissue.
    Chelly J; Kaplan JC; Maire P; Gautron S; Kahn A
    Nature; 1988 Jun; 333(6176):858-60. PubMed ID: 3290682
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dp140: alternatively spliced isoforms in brain and kidney.
    Lidov HG; Kunkel LM
    Genomics; 1997 Oct; 45(1):132-9. PubMed ID: 9339369
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dystrophin gene transcribed from different promoters in neuronal and glial cells.
    Chelly J; Hamard G; Koulakoff A; Kaplan JC; Kahn A; Berwald-Netter Y
    Nature; 1990 Mar; 344(6261):64-5. PubMed ID: 2406613
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multiple products of the Duchenne muscular dystrophy gene.
    Yaffe D; Makover A; Lederfein D; Rapaport D; Bar S; Barnea E; Nudel U
    Symp Soc Exp Biol; 1992; 46():179-88. PubMed ID: 1341034
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An autosomal transcript in skeletal muscle with homology to dystrophin.
    Love DR; Hill DF; Dickson G; Spurr NK; Byth BC; Marsden RF; Walsh FS; Edwards YH; Davies KE
    Nature; 1989 May; 339(6219):55-8. PubMed ID: 2541343
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A novel cryptic exon in intron 2 of the human dystrophin gene evolved from an intron by acquiring consensus sequences for splicing at different stages of anthropoid evolution.
    Dwi Pramono ZA; Takeshima Y; Surono A; Ishida T; Matsuo M
    Biochem Biophys Res Commun; 2000 Jan; 267(1):321-8. PubMed ID: 10623618
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modulation of in vitro splicing of the upstream intron by modifying an intra-exon sequence which is deleted from the dystrophin gene in dystrophin Kobe.
    Takeshima Y; Nishio H; Sakamoto H; Nakamura H; Matsuo M
    J Clin Invest; 1995 Feb; 95(2):515-20. PubMed ID: 7860733
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Point mutations in the dystrophin gene: evidence for frequent use of cryptic splice sites as a result of splicing defects.
    Tuffery-Giraud S; Chambert S; Demaille J; Claustres M
    Hum Mutat; 1999; 14(5):359-68. PubMed ID: 10533061
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An intact cysteine-rich domain is required for dystrophin function.
    Bies RD; Caskey CT; Fenwick R
    J Clin Invest; 1992 Aug; 90(2):666-72. PubMed ID: 1644931
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pseudoexon activation in the DMD gene as a novel mechanism for Becker muscular dystrophy.
    Tuffery-Giraud S; Saquet C; Chambert S; Claustres M
    Hum Mutat; 2003 Jun; 21(6):608-14. PubMed ID: 12754707
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Two distinct mutations in a single dystrophin gene: identification of an altered splice-site as the primary Becker muscular dystrophy mutation.
    Wilton SD; Johnsen RD; Pedretti JR; Laing NG
    Am J Med Genet; 1993 Jun; 46(5):563-9. PubMed ID: 8322822
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Expression of the dystrophin gene in cultured fibroblasts.
    Hugnot JP; Gilgenkrantz H; Chafey P; Lambert M; Eveno E; Kaplan JC; Kahn A
    Biochem Biophys Res Commun; 1993 Apr; 192(1):69-74. PubMed ID: 8476435
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Complete genomic structure of the human nebulin gene and identification of alternatively spliced transcripts.
    Donner K; Sandbacka M; Lehtokari VL; Wallgren-Pettersson C; Pelin K
    Eur J Hum Genet; 2004 Sep; 12(9):744-51. PubMed ID: 15266303
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Six novel transcripts that remove a huge intron ranging from 250 to 800 kb are produced by alternative splicing of the 5' region of the dystrophin gene in human skeletal muscle.
    Surono A; Takeshima Y; Wibawa T; Pramono ZA; Matsuo M
    Biochem Biophys Res Commun; 1997 Oct; 239(3):895-9. PubMed ID: 9367866
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.