BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

242 related articles for article (PubMed ID: 26482009)

  • 1. Selector function of MHC I molecules is determined by protein plasticity.
    Bailey A; Dalchau N; Carter R; Emmott S; Phillips A; Werner JM; Elliott T
    Sci Rep; 2015 Oct; 5():14928. PubMed ID: 26482009
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Plasticity of empty major histocompatibility complex class I molecules determines peptide-selector function.
    van Hateren A; Bailey A; Werner JM; Elliott T
    Mol Immunol; 2015 Dec; 68(2 Pt A):98-101. PubMed ID: 25818313
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular architecture of the MHC I peptide-loading complex: one tapasin molecule is essential and sufficient for antigen processing.
    Hulpke S; Baldauf C; Tampé R
    FASEB J; 2012 Dec; 26(12):5071-80. PubMed ID: 22923333
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanistic Basis for Epitope Proofreading in the Peptide-Loading Complex.
    Fleischmann G; Fisette O; Thomas C; Wieneke R; Tumulka F; Schneeweiss C; Springer S; Schäfer LV; Tampé R
    J Immunol; 2015 Nov; 195(9):4503-13. PubMed ID: 26416272
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Two polymorphisms facilitate differences in plasticity between two chicken major histocompatibility complex class I proteins.
    Bailey A; van Hateren A; Elliott T; Werner JM
    PLoS One; 2014; 9(2):e89657. PubMed ID: 24586943
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Direct evidence for conformational dynamics in major histocompatibility complex class I molecules.
    van Hateren A; Anderson M; Bailey A; Werner JM; Skipp P; Elliott T
    J Biol Chem; 2017 Dec; 292(49):20255-20269. PubMed ID: 29021251
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Distinct functions of tapasin revealed by polymorphism in MHC class I peptide loading.
    Peh CA; Laham N; Burrows SR; Zhu Y; McCluskey J
    J Immunol; 2000 Jan; 164(1):292-9. PubMed ID: 10605023
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Position 156 influences the peptide repertoire and tapasin dependency of human leukocyte antigen B*44 allotypes.
    Badrinath S; Saunders P; Huyton T; Aufderbeck S; Hiller O; Blasczyk R; Bade-Doeding C
    Haematologica; 2012 Jan; 97(1):98-106. PubMed ID: 21993680
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Crystal structures of two rat MHC class Ia (RT1-A) molecules that are associated differentially with peptide transporter alleles TAP-A and TAP-B.
    Rudolph MG; Stevens J; Speir JA; Trowsdale J; Butcher GW; Joly E; Wilson IA
    J Mol Biol; 2002 Dec; 324(5):975-90. PubMed ID: 12470953
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular mechanism of peptide editing in the tapasin-MHC I complex.
    Fisette O; Wingbermühle S; Tampé R; Schäfer LV
    Sci Rep; 2016 Jan; 6():19085. PubMed ID: 26754481
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A mechanistic basis for the co-evolution of chicken tapasin and major histocompatibility complex class I (MHC I) proteins.
    van Hateren A; Carter R; Bailey A; Kontouli N; Williams AP; Kaufman J; Elliott T
    J Biol Chem; 2013 Nov; 288(45):32797-32808. PubMed ID: 24078633
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Differential tapasin dependence of MHC class I molecules correlates with conformational changes upon peptide dissociation: a molecular dynamics simulation study.
    Sieker F; Straatsma TP; Springer S; Zacharias M
    Mol Immunol; 2008 Aug; 45(14):3714-22. PubMed ID: 18639935
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Selective loading of high-affinity peptides onto major histocompatibility complex class I molecules by the tapasin-ERp57 heterodimer.
    Wearsch PA; Cresswell P
    Nat Immunol; 2007 Aug; 8(8):873-81. PubMed ID: 17603487
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tapasin dependence of major histocompatibility complex class I molecules correlates with their conformational flexibility.
    Garstka MA; Fritzsche S; Lenart I; Hein Z; Jankevicius G; Boyle LH; Elliott T; Trowsdale J; Antoniou AN; Zacharias M; Springer S
    FASEB J; 2011 Nov; 25(11):3989-98. PubMed ID: 21836024
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A single polymorphic residue within the peptide-binding cleft of MHC class I molecules determines spectrum of tapasin dependence.
    Park B; Lee S; Kim E; Ahn K
    J Immunol; 2003 Jan; 170(2):961-8. PubMed ID: 12517962
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Computational characterization of residue couplings and micropolymorphism-induced changes in the dynamics of two differentially disease-associated human MHC class-I alleles.
    Serçinoğlu O; Ozbek P
    J Biomol Struct Dyn; 2018 Feb; 36(3):724-740. PubMed ID: 28278760
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optimization of the MHC class I peptide cargo is dependent on tapasin.
    Williams AP; Peh CA; Purcell AW; McCluskey J; Elliott T
    Immunity; 2002 Apr; 16(4):509-20. PubMed ID: 11970875
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Computational investigation of peptide binding stabilities of HLA-B*27 and HLA-B*44 alleles.
    Bunsuz A; Serçinoğlu O; Ozbek P
    Comput Biol Chem; 2020 Feb; 84():107195. PubMed ID: 31877499
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural aspects of chaperone-mediated peptide loading in the MHC-I antigen presentation pathway.
    Natarajan K; Jiang J; Margulies DH
    Crit Rev Biochem Mol Biol; 2019 Apr; 54(2):164-173. PubMed ID: 31084439
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structure of the human MHC-I peptide-loading complex.
    Blees A; Januliene D; Hofmann T; Koller N; Schmidt C; Trowitzsch S; Moeller A; Tampé R
    Nature; 2017 Nov; 551(7681):525-528. PubMed ID: 29107940
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.