BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 26482026)

  • 1. Graphene oxide as a protein matrix: influence on protein biophysical properties.
    Hernández-Cancel G; Suazo-Dávila D; Ojeda-Cruzado AJ; García-Torres D; Cabrera CR; Griebenow K
    J Nanobiotechnology; 2015 Oct; 13():70. PubMed ID: 26482026
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Immobilization of bilirubin oxidase on graphene oxide flakes with different negative charge density for oxygen reduction. The effect of GO charge density on enzyme coverage, electron transfer rate and current density.
    Filip J; Andicsová-Eckstein A; Vikartovská A; Tkac J
    Biosens Bioelectron; 2017 Mar; 89(Pt 1):384-389. PubMed ID: 27297188
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Facile immobilization of Bacillus licheniformis γ-glutamyltranspeptidase onto graphene oxide nanosheets and its application to the biocatalytic synthesis of γ-l-glutamyl peptides.
    Lin LL; Chi MC; Lan YJ; Lin MG; Juang TY; Wang TF
    Int J Biol Macromol; 2018 Oct; 117():1326-1333. PubMed ID: 29183740
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Graphene oxide as a matrix for the immobilization of glucose oxidase.
    Zhou L; Jiang Y; Gao J; Zhao X; Ma L
    Appl Biochem Biotechnol; 2012 Nov; 168(6):1635-42. PubMed ID: 22965306
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Exoelectrogens Leading to Precise Reduction of Graphene Oxide by Flexibly Switching Their Environment during Respiration.
    Bansal P; Doshi S; Panwar AS; Bahadur D
    ACS Appl Mater Interfaces; 2015 Sep; 7(37):20576-84. PubMed ID: 26288348
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Preparation of Carriers Based on ZnO Nanoparticles Decorated on Graphene Oxide (GO) Nanosheets for Efficient Immobilization of Lipase from Candida rugosa.
    Zhang S; Shi J; Deng Q; Zheng M; Wan C; Zheng C; Li Y; Huang F
    Molecules; 2017 Jul; 22(7):. PubMed ID: 28753931
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Increased thermal stability of cold-adapted esterase at ambient temperatures by immobilization on graphene oxide.
    Lee H; Jeong HK; Han J; Chung HS; Jang SH; Lee C
    Bioresour Technol; 2013 Nov; 148():620-3. PubMed ID: 24080443
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Immobilization of lactoperoxidase on graphene oxide nanosheets with improved activity and stability.
    Shariat SZAS; Borzouee F; Mofid MR; Varshosaz J
    Biotechnol Lett; 2018 Oct; 40(9-10):1343-1353. PubMed ID: 29915900
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthesis of adenine-modified reduced graphene oxide nanosheets.
    Cao H; Wu X; Yin G; Warner JH
    Inorg Chem; 2012 Mar; 51(5):2954-60. PubMed ID: 22356685
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Efficient nanobiocatalytic systems of nuclease P1 immobilized on PEG-NH2 modified graphene oxide: effects of interface property heterogeneity.
    Zhuang W; He L; Zhu J; Zheng J; Liu X; Dong Y; Wu J; Zhou J; Chen Y; Ying H
    Colloids Surf B Biointerfaces; 2016 Sep; 145():785-794. PubMed ID: 27295495
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Graphene oxide as an effective catalyst for wet air oxidation of phenol.
    Yang S; Cui Y; Sun Y; Yang H
    J Hazard Mater; 2014 Sep; 280():55-62. PubMed ID: 25127389
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Preparation of reduced graphene oxide by infrared irradiation induced photothermal reduction.
    Guo H; Peng M; Zhu Z; Sun L
    Nanoscale; 2013 Oct; 5(19):9040-8. PubMed ID: 23934578
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Suitable chemical methods for preparation of graphene oxide, graphene and surface functionalized graphene nanosheets.
    Sheshmani S; Fashapoyeh MA
    Acta Chim Slov; 2013; 60(4):813-25. PubMed ID: 24362985
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Benzene carboxylic acid derivatized graphene oxide nanosheets on natural zeolites as effective adsorbents for cationic dye removal.
    Yu Y; Murthy BN; Shapter JG; Constantopoulos KT; Voelcker NH; Ellis AV
    J Hazard Mater; 2013 Sep; 260():330-8. PubMed ID: 23778259
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nanomaterial resistant microorganism mediated reduction of graphene oxide.
    Chouhan RS; Pandey A; Qureshi A; Ozguz V; Niazi JH
    Colloids Surf B Biointerfaces; 2016 Oct; 146():39-46. PubMed ID: 27248463
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Measurements of reversible and irreversible inactivation processes of a redox enzyme, bilirubin oxidase, by electrochemical methods based on bioelectrocatalysis.
    Ikeda T; Uematsu K; Ma H; Katano H; Hibi T
    Anal Sci; 2009 Nov; 25(11):1283-8. PubMed ID: 19907083
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nano-magnesium aided activity enhancement and biophysical characterization of a psychrophilic α-amylase immobilized on graphene oxide nanosupport.
    Dutta N; Biswas S; Saha MK
    J Biosci Bioeng; 2017 Jul; 124(1):15-22. PubMed ID: 28268061
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Graphite oxide-supported CaO catalysts for transesterification of soybean oil with methanol.
    Zu Y; Tang J; Zhu W; Zhang M; Liu G; Liu Y; Zhang W; Jia M
    Bioresour Technol; 2011 Oct; 102(19):8939-44. PubMed ID: 21824767
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Preparation and characterization of some graphene based nanocomposite materials.
    Sheshmani S; Amini R
    Carbohydr Polym; 2013 Jun; 95(1):348-59. PubMed ID: 23618279
    [TBL] [Abstract][Full Text] [Related]  

  • 20. One-pot synthesis of dextran decorated reduced graphene oxide nanoparticles for targeted photo-chemotherapy.
    Hu Y; He L; Ding J; Sun D; Chen L; Chen X
    Carbohydr Polym; 2016 Jun; 144():223-9. PubMed ID: 27083812
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.