These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
175 related articles for article (PubMed ID: 26482343)
1. Heterogeneous vesicles: an analytical approach to equilibrium shapes. Kim S; Hilgenfeldt S Soft Matter; 2015 Dec; 11(46):8920-9. PubMed ID: 26482343 [TBL] [Abstract][Full Text] [Related]
2. Dense packings of polyhedra: Platonic and Archimedean solids. Torquato S; Jiao Y Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Oct; 80(4 Pt 1):041104. PubMed ID: 19905270 [TBL] [Abstract][Full Text] [Related]
3. Vesicle shape, molecular tilt, and the suppression of necks. Jiang H; Huber G; Pelcovits RA; Powers TR Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Sep; 76(3 Pt 1):031908. PubMed ID: 17930272 [TBL] [Abstract][Full Text] [Related]
4. Elastic energy of polyhedral bilayer vesicles. Haselwandter CA; Phillips R Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Jun; 83(6 Pt 1):061901. PubMed ID: 21797397 [TBL] [Abstract][Full Text] [Related]
5. Fluctuation tension and shape transition of vesicles: renormalisation calculations and Monte Carlo simulations. Gueguen G; Destainville N; Manghi M Soft Matter; 2017 Sep; 13(36):6100-6117. PubMed ID: 28885628 [TBL] [Abstract][Full Text] [Related]
6. Influence of the bending rigidity and the line tension on the mechanical stability of micropipette aspirated vesicles. Das S Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Aug; 82(2 Pt 1):021908. PubMed ID: 20866838 [TBL] [Abstract][Full Text] [Related]
8. Theoretical analysis of opening-up vesicles with single and two holes. Umeda T; Suezaki Y; Takiguchi K; Hotani H Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Jan; 71(1 Pt 1):011913. PubMed ID: 15697636 [TBL] [Abstract][Full Text] [Related]
9. Periodic three-dimensional assemblies of polyhedral lipid vesicles. Hočevar A; Ziherl P Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Apr; 83(4 Pt 1):041917. PubMed ID: 21599210 [TBL] [Abstract][Full Text] [Related]
10. Analytical expressions for the shape of axisymmetric membranes with multiple domains. Idema T; Storm C Eur Phys J E Soft Matter; 2011 Jul; 34(7):67. PubMed ID: 21751093 [TBL] [Abstract][Full Text] [Related]
11. Exploration of the shapes of double-walled vesicles with a confined inner membrane. Guo K; Li J J Phys Condens Matter; 2011 Jul; 23(28):285103. PubMed ID: 21709351 [TBL] [Abstract][Full Text] [Related]
12. Free fluid vesicles are not exactly spherical. Linke GT; Lipowsky R; Gruhn T Phys Rev E Stat Nonlin Soft Matter Phys; 2005 May; 71(5 Pt 1):051602. PubMed ID: 16089540 [TBL] [Abstract][Full Text] [Related]
13. Toroidal membrane vesicles in spherical confinement. Bouzar L; Menas F; Müller MM Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Sep; 92(3):032721. PubMed ID: 26465512 [TBL] [Abstract][Full Text] [Related]
14. Shapes of sedimenting soft elastic capsules in a viscous fluid. Boltz HH; Kierfeld J Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Sep; 92(3):033003. PubMed ID: 26465552 [TBL] [Abstract][Full Text] [Related]
15. Shape of fluid vesicles anchored by rigid rod. Sun M; Qiu F; Zhang H; Yang Y J Phys Chem B; 2006 May; 110(19):9698-707. PubMed ID: 16686521 [TBL] [Abstract][Full Text] [Related]
16. Mechanical stability of micropipet-aspirated giant vesicles with fluid phase coexistence. Das S; Tian A; Baumgart T J Phys Chem B; 2008 Sep; 112(37):11625-30. PubMed ID: 18717549 [TBL] [Abstract][Full Text] [Related]
17. Coupling between vesicle shape and lateral distribution of mobile membrane inclusions. Bozic B; Kralj-Iglic V; Svetina S Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Apr; 73(4 Pt 1):041915. PubMed ID: 16711844 [TBL] [Abstract][Full Text] [Related]
18. Theoretical and numerical investigations on shapes of planar lipid monolayer domains. Wu H; Tu ZC J Chem Phys; 2009 Jan; 130(4):045103. PubMed ID: 19191416 [TBL] [Abstract][Full Text] [Related]
19. Morphological variation of a lipid vesicle confined in a spherical vesicle. Sakashita A; Imai M; Noguchi H Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Apr; 89(4):040701. PubMed ID: 24827172 [TBL] [Abstract][Full Text] [Related]
20. Fourth class of convex equilateral polyhedron with polyhedral symmetry related to fullerenes and viruses. Schein S; Gayed JM Proc Natl Acad Sci U S A; 2014 Feb; 111(8):2920-5. PubMed ID: 24516137 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]