These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 26482860)

  • 1. Surface nanostructures for fluorescence probing of supported lipid bilayers on reflective substrates.
    Dabkowska AP; Piret G; Niman CS; Lard M; Linke H; Nylander T; Prinz CN
    Nanoscale; 2015 Nov; 7(43):18020-4. PubMed ID: 26482860
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spatiotemporal dynamics of solvent-assisted lipid bilayer formation.
    Kim MC; Gillissen JJ; Tabaei SR; Zhdanov VP; Cho NJ
    Phys Chem Chem Phys; 2015 Dec; 17(46):31145-51. PubMed ID: 26539669
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High yield formation of lipid bilayer shells around silicon nanowires in aqueous solution.
    Römhildt L; Gang A; Baraban L; Opitz J; Cuniberti G
    Nanotechnology; 2013 Sep; 24(35):355601. PubMed ID: 23917521
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lithographically defined macroscale modulation of lateral fluidity and phase separation realized via patterned nanoporous silica-supported phospholipid bilayers.
    Kendall EL; Ngassam VN; Gilmore SF; Brinker CJ; Parikh AN
    J Am Chem Soc; 2013 Oct; 135(42):15718-21. PubMed ID: 24111800
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lipid-Bilayer Dynamics Probed by a Carbon Dot-Phospholipid Conjugate.
    Nandi S; Malishev R; Bhunia SK; Kolusheva S; Jopp J; Jelinek R
    Biophys J; 2016 May; 110(9):2016-25. PubMed ID: 27166809
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Membrane curvature based lipid sorting using a nanoparticle patterned substrate.
    Black JC; Cheney PP; Campbell T; Knowles MK
    Soft Matter; 2014 Mar; 10(12):2016-23. PubMed ID: 24652483
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamic behavior of DNA cages anchored on spherically supported lipid bilayers.
    Conway JW; Madwar C; Edwardson TG; McLaughlin CK; Fahkoury J; Lennox RB; Sleiman HF
    J Am Chem Soc; 2014 Sep; 136(37):12987-97. PubMed ID: 25140890
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Subnanometer actuation of a tethered lipid bilayer monitored with fluorescence resonance energy transfer.
    Kunding A; Stamou D
    J Am Chem Soc; 2006 Sep; 128(35):11328-9. PubMed ID: 16939236
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Creating fluid and air-stable solid supported lipid bilayers.
    Holden MA; Jung SY; Yang T; Castellana ET; Cremer PS
    J Am Chem Soc; 2004 Jun; 126(21):6512-3. PubMed ID: 15161253
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sensing Ability and Formation Criterion of Fluid Supported Lipid Bilayer Coated Graphene Field-Effect Transistors.
    Hu SK; Lo FY; Hsieh CC; Chao L
    ACS Sens; 2019 Apr; 4(4):892-899. PubMed ID: 30817891
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mobile lipid bilayers on gold surfaces through structure-induced lipid vesicle rupture.
    Peng PY; Chiang PC; Chao L
    Langmuir; 2015 Apr; 31(13):3904-11. PubMed ID: 25746237
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Segregation of molecules in lipid bilayer spreading through metal nanogates.
    Nabika H; Iijima N; Takimoto B; Ueno K; Misawa H; Murakoshi K
    Anal Chem; 2009 Jan; 81(2):699-704. PubMed ID: 19093749
    [TBL] [Abstract][Full Text] [Related]  

  • 13. MOF nanoparticles coated by lipid bilayers and their uptake by cancer cells.
    Wuttke S; Braig S; Preiß T; Zimpel A; Sicklinger J; Bellomo C; Rädler JO; Vollmar AM; Bein T
    Chem Commun (Camb); 2015 Nov; 51(87):15752-5. PubMed ID: 26359316
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Imaging forster resonance energy transfer measurements of transmembrane helix interactions in lipid bilayers on a solid support.
    Li E; Hristova K
    Langmuir; 2004 Oct; 20(21):9053-60. PubMed ID: 15461486
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Supported lipid bilayers as dynamic platforms for tethered particles.
    Hartman KL; Kim S; Kim K; Nam JM
    Nanoscale; 2015 Jan; 7(1):66-76. PubMed ID: 25408237
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Controllable occurrence of free-standing lipid membranes on nanograting structured supports.
    Peng PY; Chiang PC; Chao L
    ACS Appl Mater Interfaces; 2014 Aug; 6(15):12261-9. PubMed ID: 24988277
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In situ formation and characterization of poly(ethylene glycol)-supported lipid bilayers on gold surfaces.
    Munro JC; Frank CW
    Langmuir; 2004 Nov; 20(24):10567-75. PubMed ID: 15544386
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Templated assembly of biomembranes on silica microspheres using bacteriorhodopsin conjugates as structural anchors.
    Sharma MK; Gilchrist ML
    Langmuir; 2007 Jun; 23(13):7101-12. PubMed ID: 17511484
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Supported lipid bilayers with controlled curvature via colloidal lithography.
    Sundh M; Manandhar M; Svedhem S; Sutherland DS
    IEEE Trans Nanobioscience; 2011 Sep; 10(3):187-93. PubMed ID: 21926028
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Self-assembly formation of lipid bilayer coatings on bare aluminum oxide: overcoming the force of interfacial water.
    Jackman JA; Tabaei SR; Zhao Z; Yorulmaz S; Cho NJ
    ACS Appl Mater Interfaces; 2015 Jan; 7(1):959-68. PubMed ID: 25513828
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.