These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

332 related articles for article (PubMed ID: 26483479)

  • 1. High-speed spelling with a noninvasive brain-computer interface.
    Chen X; Wang Y; Nakanishi M; Gao X; Jung TP; Gao S
    Proc Natl Acad Sci U S A; 2015 Nov; 112(44):E6058-67. PubMed ID: 26483479
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Hybrid Speller Design Using Eye Tracking and SSVEP Brain-Computer Interface.
    Mannan MMN; Kamran MA; Kang S; Choi HS; Jeong MY
    Sensors (Basel); 2020 Feb; 20(3):. PubMed ID: 32046131
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A high-speed brain speller using steady-state visual evoked potentials.
    Nakanishi M; Wang Y; Wang YT; Mitsukura Y; Jung TP
    Int J Neural Syst; 2014 Sep; 24(6):1450019. PubMed ID: 25081427
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hybrid frequency and phase coding for a high-speed SSVEP-based BCI speller.
    Chen X; Wang Y; Nakanishi M; Jung TP; Gao X
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():3993-6. PubMed ID: 25570867
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Filter bank canonical correlation analysis for implementing a high-speed SSVEP-based brain-computer interface.
    Chen X; Wang Y; Gao S; Jung TP; Gao X
    J Neural Eng; 2015 Aug; 12(4):046008. PubMed ID: 26035476
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Eliciting dual-frequency SSVEP using a hybrid SSVEP-P300 BCI.
    Chang MH; Lee JS; Heo J; Park KS
    J Neurosci Methods; 2016 Jan; 258():104-13. PubMed ID: 26561770
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Asynchronous c-VEP communication tools-efficiency comparison of low-target, multi-target and dictionary-assisted BCI spellers.
    Gembler FW; Benda M; Rezeika A; Stawicki PR; Volosyak I
    Sci Rep; 2020 Oct; 10(1):17064. PubMed ID: 33051500
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Towards solving of the Illiteracy phenomenon for VEP-based brain-computer interfaces.
    Volosyak I; Rezeika A; Benda M; Gembler F; Stawicki P
    Biomed Phys Eng Express; 2020 May; 6(3):035034. PubMed ID: 33438679
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An eighty-target high-speed Chinese BCI speller.
    Chengcheng Han ; Guanghua Xu ; Jun Xie ; Min Li ; Sicong Zhang ; Ailing Luo
    Annu Int Conf IEEE Eng Med Biol Soc; 2017 Jul; 2017():1652-1655. PubMed ID: 29060201
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A hybrid BCI speller paradigm combining P300 potential and the SSVEP blocking feature.
    Xu M; Qi H; Wan B; Yin T; Liu Z; Ming D
    J Neural Eng; 2013 Apr; 10(2):026001. PubMed ID: 23369924
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A high-frequency SSVEP-BCI system based on a 360 Hz refresh rate.
    Liu K; Yao Z; Zheng L; Wei Q; Pei W; Gao X; Wang Y
    J Neural Eng; 2023 Aug; 20(4):. PubMed ID: 37604119
    [No Abstract]   [Full Text] [Related]  

  • 12. A Dynamically Optimized SSVEP Brain-Computer Interface (BCI) Speller.
    Yin E; Zhou Z; Jiang J; Yu Y; Hu D
    IEEE Trans Biomed Eng; 2015 Jun; 62(6):1447-56. PubMed ID: 24801483
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Doubling the Speed of N200 Speller via Dual-Directional Motion Encoding.
    Liu D; Liu C; Chen J; Zhang D; Hong B
    IEEE Trans Biomed Eng; 2021 Jan; 68(1):204-213. PubMed ID: 32746042
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An Efficient Asynchronous High-Frequency Steady-State Visual Evoked Potential-Based Brain-Computer Interface speller: The Problem of Individual Differences.
    Ajami S; Mahnam A; Behtaj S; Abootalebi V
    J Med Signals Sens; 2018; 8(4):215-224. PubMed ID: 30603613
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A High Performance Spelling System based on EEG-EOG Signals With Visual Feedback.
    Lee MH; Williamson J; Won DO; Fazli S; Lee SW
    IEEE Trans Neural Syst Rehabil Eng; 2018 Jul; 26(7):1443-1459. PubMed ID: 29985154
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A visual parallel-BCI speller based on the time-frequency coding strategy.
    Xu M; Chen L; Zhang L; Qi H; Ma L; Tang J; Wan B; Ming D
    J Neural Eng; 2014 Apr; 11(2):026014. PubMed ID: 24608672
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A speedy hybrid BCI spelling approach combining P300 and SSVEP.
    Yin E; Zhou Z; Jiang J; Chen F; Liu Y; Hu D
    IEEE Trans Biomed Eng; 2014 Feb; 61(2):473-83. PubMed ID: 24058009
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transfer learning of an ensemble of DNNs for SSVEP BCI spellers without user-specific training.
    Berke Guney O; Ozkan H
    J Neural Eng; 2023 Jan; 20(1):. PubMed ID: 36535036
    [No Abstract]   [Full Text] [Related]  

  • 19. A Deep Neural Network for SSVEP-Based Brain-Computer Interfaces.
    Guney OB; Oblokulov M; Ozkan H
    IEEE Trans Biomed Eng; 2022 Feb; 69(2):932-944. PubMed ID: 34495825
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Brain-computer interfaces using capacitive measurement of visual or auditory steady-state responses.
    Baek HJ; Kim HS; Heo J; Lim YG; Park KS
    J Neural Eng; 2013 Apr; 10(2):024001. PubMed ID: 23448913
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.