These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

332 related articles for article (PubMed ID: 26483479)

  • 21. Development of a High-speed Mental Spelling System Combining Eye Tracking and SSVEP-based BCI with High Scalability.
    Lin X; Chen Z; Xu K; Zhang S
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():6318-6322. PubMed ID: 31947287
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Estimating and approaching the maximum information rate of noninvasive visual brain-computer interface.
    Shi N; Miao Y; Huang C; Li X; Song Y; Chen X; Wang Y; Gao X
    Neuroimage; 2024 Apr; 289():120548. PubMed ID: 38382863
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Spelling with non-invasive Brain-Computer Interfaces--current and future trends.
    Cecotti H
    J Physiol Paris; 2011; 105(1-3):106-14. PubMed ID: 21911058
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Intracranial brain-computer interface spelling using localized visual motion response.
    Liu D; Xu X; Li D; Li J; Yu X; Ling Z; Hong B
    Neuroimage; 2022 Sep; 258():119363. PubMed ID: 35688315
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Optimizing SSVEP-Based BCI System towards Practical High-Speed Spelling.
    Tang J; Xu M; Han J; Liu M; Dai T; Chen S; Ming D
    Sensors (Basel); 2020 Jul; 20(15):. PubMed ID: 32731432
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A novel hybrid BCI speller based on the incorporation of SSVEP into the P300 paradigm.
    Yin E; Zhou Z; Jiang J; Chen F; Liu Y; Hu D
    J Neural Eng; 2013 Apr; 10(2):026012. PubMed ID: 23429035
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Dynamic time window mechanism for time synchronous VEP-based BCIs-Performance evaluation with a dictionary-supported BCI speller employing SSVEP and c-VEP.
    Gembler F; Stawicki P; Saboor A; Volosyak I
    PLoS One; 2019; 14(6):e0218177. PubMed ID: 31194817
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Commanding a robotic wheelchair with a high-frequency steady-state visual evoked potential based brain-computer interface.
    Diez PF; Torres Müller SM; Mut VA; Laciar E; Avila E; Bastos-Filho TF; Sarcinelli-Filho M
    Med Eng Phys; 2013 Aug; 35(8):1155-64. PubMed ID: 23339894
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Using a cVEP-Based Brain-Computer Interface to Control a Virtual Agent.
    Riechmann H; Finke A; Ritter H
    IEEE Trans Neural Syst Rehabil Eng; 2016 Jun; 24(6):692-9. PubMed ID: 26469340
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Development of an SSVEP-based BCI spelling system adopting a QWERTY-style LED keyboard.
    Hwang HJ; Lim JH; Jung YJ; Choi H; Lee SW; Im CH
    J Neurosci Methods; 2012 Jun; 208(1):59-65. PubMed ID: 22580222
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A Spatially-Coded Visual Brain-Computer Interface for Flexible Visual Spatial Information Decoding.
    Chen J; Wang Y; Maye A; Hong B; Gao X; Engel AK; Zhang D
    IEEE Trans Neural Syst Rehabil Eng; 2021; 29():926-933. PubMed ID: 33983885
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Integrating dynamic stopping, transfer learning and language models in an adaptive zero-training ERP speller.
    Kindermans PJ; Tangermann M; Müller KR; Schrauwen B
    J Neural Eng; 2014 Jun; 11(3):035005. PubMed ID: 24834896
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Exploring combinations of auditory and visual stimuli for gaze-independent brain-computer interfaces.
    An X; Höhne J; Ming D; Blankertz B
    PLoS One; 2014; 9(10):e111070. PubMed ID: 25350547
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The cost of space independence in P300-BCI spellers.
    Chennu S; Alsufyani A; Filetti M; Owen AM; Bowman H
    J Neuroeng Rehabil; 2013 Jul; 10():82. PubMed ID: 23895406
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Asynchronous non-invasive high-speed BCI speller with robust non-control state detection.
    Nagel S; Spüler M
    Sci Rep; 2019 Jun; 9(1):8269. PubMed ID: 31164679
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Clinical evaluation of BrainTree, a motor imagery hybrid BCI speller.
    Perdikis S; Leeb R; Williamson J; Ramsay A; Tavella M; Desideri L; Hoogerwerf EJ; Al-Khodairy A; Murray-Smith R; Millán JD
    J Neural Eng; 2014 Jun; 11(3):036003. PubMed ID: 24737114
    [TBL] [Abstract][Full Text] [Related]  

  • 37. An Idle-State Detection Algorithm for SSVEP-Based Brain-Computer Interfaces Using a Maximum Evoked Response Spatial Filter.
    Zhang D; Huang B; Wu W; Li S
    Int J Neural Syst; 2015 Nov; 25(7):1550030. PubMed ID: 26246229
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Brain-Computer Interface Spellers: A Review.
    Rezeika A; Benda M; Stawicki P; Gembler F; Saboor A; Volosyak I
    Brain Sci; 2018 Mar; 8(4):. PubMed ID: 29601538
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A Brain-Computer Interface Based on Miniature-Event-Related Potentials Induced by Very Small Lateral Visual Stimuli.
    Xu M; Xiao X; Wang Y; Qi H; Jung TP; Ming D
    IEEE Trans Biomed Eng; 2018 May; 65(5):1166-1175. PubMed ID: 29683431
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A Multifocal SSVEPs-based Brain-Computer Interface with Less Calibration Time
    Tang J; Xu M; Liu Z; Meng J; Chen S; Ming D
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():5975-5978. PubMed ID: 31947208
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.