These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
192 related articles for article (PubMed ID: 26483502)
1. A distinct pathway for tetrahymanol synthesis in bacteria. Banta AB; Wei JH; Welander PV Proc Natl Acad Sci U S A; 2015 Nov; 112(44):13478-83. PubMed ID: 26483502 [TBL] [Abstract][Full Text] [Related]
2. Squalene-hopene cyclase (Spterp25) from Streptomyces peucetius: sequence analysis, expression and functional characterization. Ghimire GP; Oh TJ; Lee HC; Sohng JK Biotechnol Lett; 2009 Apr; 31(4):565-9. PubMed ID: 19116691 [TBL] [Abstract][Full Text] [Related]
3. Squalene-hopene cyclase from Bradyrhizobium japonicum: cloning, expression, sequence analysis and comparison to other triterpenoid cyclases. Perzl M; Müller P; Poralla K; Kannenberg EL Microbiology (Reading); 1997 Apr; 143 ( Pt 4)():1235-1242. PubMed ID: 9141686 [TBL] [Abstract][Full Text] [Related]
4. A squalene-hopene cyclase in Bouwknegt J; Wiersma SJ; Ortiz-Merino RA; Doornenbal ESR; Buitenhuis P; Giera M; Müller C; Pronk JT Proc Natl Acad Sci U S A; 2021 Aug; 118(32):. PubMed ID: 34353908 [TBL] [Abstract][Full Text] [Related]
5. Squalene-hopene cyclase from Methylococcus capsulatus (Bath): a bacterium producing hopanoids and steroids. Tippelt A; Jahnke L; Poralla K Biochim Biophys Acta; 1998 Mar; 1391(2):223-32. PubMed ID: 9555026 [TBL] [Abstract][Full Text] [Related]
6. Purification and properties of the squalene-hopene cyclase from Rhodopseudomonas palustris, a purple non-sulfur bacterium producing hopanoids and tetrahymanol. Kleemann G; Kellner R; Poralla K Biochim Biophys Acta; 1994 Jan; 1210(3):317-20. PubMed ID: 8305486 [TBL] [Abstract][Full Text] [Related]
7. Bicyclic triterpenes as new main products of squalene-hopene cyclase by mutation at conserved tyrosine residues. Füll C FEBS Lett; 2001 Dec; 509(3):361-4. PubMed ID: 11749956 [TBL] [Abstract][Full Text] [Related]
10. Lateral transfer of tetrahymanol-synthesizing genes has allowed multiple diverse eukaryote lineages to independently adapt to environments without oxygen. Takishita K; Chikaraishi Y; Leger MM; Kim E; Yabuki A; Ohkouchi N; Roger AJ Biol Direct; 2012 Feb; 7():5. PubMed ID: 22296756 [TBL] [Abstract][Full Text] [Related]
11. Synthesis of arborane triterpenols by a bacterial oxidosqualene cyclase. Banta AB; Wei JH; Gill CC; Giner JL; Welander PV Proc Natl Acad Sci U S A; 2017 Jan; 114(2):245-250. PubMed ID: 28028245 [TBL] [Abstract][Full Text] [Related]
12. Squalene-Tetrahymanol Cyclase Expression Enables Sterol-Independent Growth of Saccharomyces cerevisiae. Wiersma SJ; Mooiman C; Giera M; Pronk JT Appl Environ Microbiol; 2020 Aug; 86(17):. PubMed ID: 32561581 [TBL] [Abstract][Full Text] [Related]
13. Squalene-hopene cyclase: final deprotonation reaction, conformational analysis for the cyclization of (3R,S)-2,3-oxidosqualene and further evidence for the requirement of an isopropylidene moiety both for initiation of the polycyclization cascade and for the formation of the 5-membered E-ring. Hoshino T; Nakano S; Kondo T; Sato T; Miyoshi A Org Biomol Chem; 2004 May; 2(10):1456-70. PubMed ID: 15136801 [TBL] [Abstract][Full Text] [Related]
14. Squalene-hopene cyclases. Siedenburg G; Jendrossek D Appl Environ Microbiol; 2011 Jun; 77(12):3905-15. PubMed ID: 21531832 [TBL] [Abstract][Full Text] [Related]
15. Concerted nature of AB ring formation in the enzymatic cyclization of squalene to hopenes. Hess BA; Smentek L Org Lett; 2004 May; 6(11):1717-20. PubMed ID: 15151397 [TBL] [Abstract][Full Text] [Related]
16. Non-specific biosynthesis of gammacerane derivatives by a cell-free system from the protozoon Tetrahymena pyriformis. Conformations of squalene, (3S)-squalene epoxide and (3R)-squalene epoxide during the cyclization. Bouvier P; Berger Y; Rohmer M; Ourisson G Eur J Biochem; 1980 Dec; 112(3):549-56. PubMed ID: 6780347 [TBL] [Abstract][Full Text] [Related]
17. Studies on the biosynthesis of tetrahymanol in Tetrahymena pyriformis. The mechanism of inhibition by cholesterol. Beedle AS; Munday KA; Wilton DC Biochem J; 1974 Jul; 142(1):57-64. PubMed ID: 4140721 [TBL] [Abstract][Full Text] [Related]
18. A Nitrospira metagenome illuminates the physiology and evolution of globally important nitrite-oxidizing bacteria. Lücker S; Wagner M; Maixner F; Pelletier E; Koch H; Vacherie B; Rattei T; Damsté JS; Spieck E; Le Paslier D; Daims H Proc Natl Acad Sci U S A; 2010 Jul; 107(30):13479-84. PubMed ID: 20624973 [TBL] [Abstract][Full Text] [Related]
19. Identification and functional characterization of squalene epoxidases and oxidosqualene cyclases from Tripterygium wilfordii. Liu Y; Zhou J; Hu T; Lu Y; Gao L; Tu L; Gao J; Huang L; Gao W Plant Cell Rep; 2020 Mar; 39(3):409-418. PubMed ID: 31838574 [TBL] [Abstract][Full Text] [Related]
20. Detection of 1,2-hydride shifts in the formation of euph-7-ene by the squalene-tetrahymanol cyclase of Tetrahymena pyriformis. Giner JL; Rocchetti S; Neunlist S; Rohmer M; Arigoni D Chem Commun (Camb); 2005 Jun; (24):3089-91. PubMed ID: 15959594 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]