BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

276 related articles for article (PubMed ID: 26483543)

  • 1. The Hydroxyl Side Chain of a Highly Conserved Serine Residue Is Required for Cation Selectivity and Substrate Transport in the Glial Glutamate Transporter GLT-1/SLC1A2.
    Simonin A; Montalbetti N; Gyimesi G; Pujol-Giménez J; Hediger MA
    J Biol Chem; 2015 Dec; 290(51):30464-74. PubMed ID: 26483543
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The role of cation binding in determining substrate selectivity of glutamate transporters.
    Huang S; Ryan RM; Vandenberg RJ
    J Biol Chem; 2009 Feb; 284(7):4510-5. PubMed ID: 19074430
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The equivalent of a thallium binding residue from an archeal homolog controls cation interactions in brain glutamate transporters.
    Teichman S; Qu S; Kanner BI
    Proc Natl Acad Sci U S A; 2009 Aug; 106(34):14297-302. PubMed ID: 19706515
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Both reentrant loops of the sodium-coupled glutamate transporters contain molecular determinants of cation selectivity.
    Silverstein N; Sliman A; Stockner T; Kanner BI
    J Biol Chem; 2018 Sep; 293(37):14200-14209. PubMed ID: 30026234
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Conserved asparagine residue located in binding pocket controls cation selectivity and substrate interactions in neuronal glutamate transporter.
    Teichman S; Qu S; Kanner BI
    J Biol Chem; 2012 May; 287(21):17198-17205. PubMed ID: 22493292
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular Determinants of Substrate Specificity in Sodium-coupled Glutamate Transporters.
    Silverstein N; Ewers D; Forrest LR; Fahlke C; Kanner BI
    J Biol Chem; 2015 Nov; 290(48):28988-96. PubMed ID: 26475859
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular determinants for functional differences between alanine-serine-cysteine transporter 1 and other glutamate transporter family members.
    Scopelliti AJ; Ryan RM; Vandenberg RJ
    J Biol Chem; 2013 Mar; 288(12):8250-8257. PubMed ID: 23393130
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A conserved aspartate residue located at the extracellular end of the binding pocket controls cation interactions in brain glutamate transporters.
    Rosental N; Gameiro A; Grewer C; Kanner BI
    J Biol Chem; 2011 Dec; 286(48):41381-41390. PubMed ID: 21984827
    [TBL] [Abstract][Full Text] [Related]  

  • 9. K+ amino acid transporter KAAT1 mutant Y147F has increased transport activity and altered substrate selectivity.
    Liu Z; Stevens BR; Feldman DH; Hediger MA; Harvey WR
    J Exp Biol; 2003 Jan; 206(Pt 2):245-54. PubMed ID: 12477895
    [TBL] [Abstract][Full Text] [Related]  

  • 10. TM4 of the glutamate transporter GLT-1 experiences substrate-induced motion during the transport cycle.
    Rong X; Tan F; Wu X; Zhang X; Lu L; Zou X; Qu S
    Sci Rep; 2016 Oct; 6():34522. PubMed ID: 27698371
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Serine-O-sulphate transport by the human glutamate transporter, EAAT2.
    Vandenberg RJ; Mitrovic AD; Johnston GA
    Br J Pharmacol; 1998 Apr; 123(8):1593-600. PubMed ID: 9605566
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The position of an arginine residue influences substrate affinity and K+ coupling in the human glutamate transporter, EAAT1.
    Ryan RM; Kortt NC; Sirivanta T; Vandenberg RJ
    J Neurochem; 2010 Jul; 114(2):565-75. PubMed ID: 20477940
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Position of the third Na+ site in the aspartate transporter GltPh and the human glutamate transporter, EAAT1.
    Bastug T; Heinzelmann G; Kuyucak S; Salim M; Vandenberg RJ; Ryan RM
    PLoS One; 2012; 7(3):e33058. PubMed ID: 22427946
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Mutation in Transmembrane Domain 7 (TM7) of Excitatory Amino Acid Transporters Disrupts the Substrate-dependent Gating of the Intrinsic Anion Conductance and Drives the Channel into a Constitutively Open State.
    Torres-Salazar D; Jiang J; Divito CB; Garcia-Olivares J; Amara SG
    J Biol Chem; 2015 Sep; 290(38):22977-90. PubMed ID: 26203187
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A conserved methionine residue controls the substrate selectivity of a neuronal glutamate transporter.
    Rosental N; Kanner BI
    J Biol Chem; 2010 Jul; 285(28):21241-8. PubMed ID: 20424168
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regulation of glial glutamate transporters by C-terminal domains.
    Leinenweber A; Machtens JP; Begemann B; Fahlke C
    J Biol Chem; 2011 Jan; 286(3):1927-37. PubMed ID: 21097502
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The 'glial' glutamate transporter, EAAT2 (Glt-1) accounts for high affinity glutamate uptake into adult rodent nerve endings.
    Suchak SK; Baloyianni NV; Perkinton MS; Williams RJ; Meldrum BS; Rattray M
    J Neurochem; 2003 Feb; 84(3):522-32. PubMed ID: 12558972
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A glutamine residue conserved in the neurotransmitter:sodium:symporters is essential for the interaction of chloride with the GABA transporter GAT-1.
    Ben-Yona A; Bendahan A; Kanner BI
    J Biol Chem; 2011 Jan; 286(4):2826-33. PubMed ID: 21098479
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Two serine residues of the glutamate transporter GLT-1 are crucial for coupling the fluxes of sodium and the neurotransmitter.
    Zhang Y; Kanner BI
    Proc Natl Acad Sci U S A; 1999 Feb; 96(4):1710-5. PubMed ID: 9990089
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evidence for a third sodium-binding site in glutamate transporters suggests an ion/substrate coupling model.
    Larsson HP; Wang X; Lev B; Baconguis I; Caplan DA; Vyleta NP; Koch HP; Diez-Sampedro A; Noskov SY
    Proc Natl Acad Sci U S A; 2010 Aug; 107(31):13912-7. PubMed ID: 20634426
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.