These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

340 related articles for article (PubMed ID: 26483629)

  • 21. A neuromorphic implementation of multiple spike-timing synaptic plasticity rules for large-scale neural networks.
    Wang RM; Hamilton TJ; Tapson JC; van Schaik A
    Front Neurosci; 2015; 9():180. PubMed ID: 26041985
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Extended memory lifetime in spiking neural networks employing memristive synapses with nonlinear conductance dynamics.
    Brivio S; Conti D; Nair MV; Frascaroli J; Covi E; Ricciardi C; Indiveri G; Spiga S
    Nanotechnology; 2019 Jan; 30(1):015102. PubMed ID: 30378572
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Memristors for Neuromorphic Circuits and Artificial Intelligence Applications.
    Miranda E; Suñé J
    Materials (Basel); 2020 Feb; 13(4):. PubMed ID: 32093164
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A scalable neural chip with synaptic electronics using CMOS integrated memristors.
    Cruz-Albrecht JM; Derosier T; Srinivasa N
    Nanotechnology; 2013 Sep; 24(38):384011. PubMed ID: 23999447
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Pulse Shape and Timing Dependence on the Spike-Timing Dependent Plasticity Response of Ion-Conducting Memristors as Synapses.
    Campbell KA; Drake KT; Barney Smith EH
    Front Bioeng Biotechnol; 2016; 4():97. PubMed ID: 28083531
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Neuromorphic computation with spiking memristors: habituation, experimental instantiation of logic gates and a novel sequence-sensitive perceptron model.
    Gale EM
    Faraday Discuss; 2019 Feb; 213(0):521-551. PubMed ID: 30418449
    [TBL] [Abstract][Full Text] [Related]  

  • 27. All-memristive neuromorphic computing with level-tuned neurons.
    Pantazi A; Woźniak S; Tuma T; Eleftheriou E
    Nanotechnology; 2016 Sep; 27(35):355205. PubMed ID: 27455898
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Partial Breakdown of Input Specificity of STDP at Individual Synapses Promotes New Learning.
    Volgushev M; Chen JY; Ilin V; Goz R; Chistiakova M; Bazhenov M
    J Neurosci; 2016 Aug; 36(34):8842-55. PubMed ID: 27559167
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Self-adaptive STDP-based learning of a spiking neuron with nanocomposite memristive weights.
    Emelyanov AV; Nikiruy KE; Serenko AV; Sitnikov AV; Presnyakov MY; Rybka RB; Sboev AG; Rylkov VV; Kashkarov PK; Kovalchuk MV; Demin VA
    Nanotechnology; 2020 Jan; 31(4):045201. PubMed ID: 31578002
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Spike-timing-dependent plasticity learning of coincidence detection with passively integrated memristive circuits.
    Prezioso M; Mahmoodi MR; Bayat FM; Nili H; Kim H; Vincent A; Strukov DB
    Nat Commun; 2018 Dec; 9(1):5311. PubMed ID: 30552327
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Synaptic Plasticity in Memristive Artificial Synapses and Their Robustness Against Noisy Inputs.
    Du N; Zhao X; Chen Z; Choubey B; Di Ventra M; Skorupa I; Bürger D; Schmidt H
    Front Neurosci; 2021; 15():660894. PubMed ID: 34335153
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Synaptic behavior and STDP of asymmetric nanoscale memristors in biohybrid systems.
    Williamson A; Schumann L; Hiller L; Klefenz F; Hoerselmann I; Husar P; Schober A
    Nanoscale; 2013 Aug; 5(16):7297-303. PubMed ID: 23817887
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Training and operation of an integrated neuromorphic network based on metal-oxide memristors.
    Prezioso M; Merrikh-Bayat F; Hoskins BD; Adam GC; Likharev KK; Strukov DB
    Nature; 2015 May; 521(7550):61-4. PubMed ID: 25951284
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Organic Memristor with Synaptic Plasticity for Neuromorphic Computing Applications.
    Zeng J; Chen X; Liu S; Chen Q; Liu G
    Nanomaterials (Basel); 2023 Feb; 13(5):. PubMed ID: 36903681
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Emerging Memristive Artificial Synapses and Neurons for Energy-Efficient Neuromorphic Computing.
    Choi S; Yang J; Wang G
    Adv Mater; 2020 Dec; 32(51):e2004659. PubMed ID: 33006204
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A Model for R(t) Elements and R(t) -Based Spike-Timing-Dependent Plasticity With Basic Circuit Examples.
    Ivans RC; Dahl SG; Cantley KD
    IEEE Trans Neural Netw Learn Syst; 2020 Oct; 31(10):4206-4216. PubMed ID: 31869804
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Endocannabinoids mediate bidirectional striatal spike-timing-dependent plasticity.
    Cui Y; Paillé V; Xu H; Genet S; Delord B; Fino E; Berry H; Venance L
    J Physiol; 2015 Jul; 593(13):2833-49. PubMed ID: 25873197
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Synaptic Plasticity and Metaplasticity of Biological Synapse Realized in a KNbO
    Lee TH; Hwang HG; Woo JU; Kim DH; Kim TW; Nahm S
    ACS Appl Mater Interfaces; 2018 Aug; 10(30):25673-25682. PubMed ID: 29985576
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Control of Synaptic Plasticity Learning of Ferroelectric Tunnel Memristor by Nanoscale Interface Engineering.
    Guo R; Zhou Y; Wu L; Wang Z; Lim Z; Yan X; Lin W; Wang H; Yoong HY; Chen S; Ariando ; Venkatesan T; Wang J; Chow GM; Gruverman A; Miao X; Zhu Y; Chen J
    ACS Appl Mater Interfaces; 2018 Apr; 10(15):12862-12869. PubMed ID: 29617112
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Learning through ferroelectric domain dynamics in solid-state synapses.
    Boyn S; Grollier J; Lecerf G; Xu B; Locatelli N; Fusil S; Girod S; Carrétéro C; Garcia K; Xavier S; Tomas J; Bellaiche L; Bibes M; Barthélémy A; Saïghi S; Garcia V
    Nat Commun; 2017 Apr; 8():14736. PubMed ID: 28368007
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.