These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
168 related articles for article (PubMed ID: 26483811)
1. Role of Large Cabbage White butterfly male-derived compounds in elicitation of direct and indirect egg-killing defenses in the black mustard. Fatouros NE; Paniagua Voirol LR; Drizou F; Doan QT; Pineda A; Frago E; van Loon JJ Front Plant Sci; 2015; 6():794. PubMed ID: 26483811 [TBL] [Abstract][Full Text] [Related]
2. Male-derived butterfly anti-aphrodisiac mediates induced indirect plant defense. Fatouros NE; Broekgaarden C; Bukovinszkine'Kiss G; van Loon JJ; Mumm R; Huigens ME; Dicke M; Hilker M Proc Natl Acad Sci U S A; 2008 Jul; 105(29):10033-8. PubMed ID: 18626017 [TBL] [Abstract][Full Text] [Related]
3. Attraction of egg-killing parasitoids toward induced plant volatiles in a multi-herbivore context. Cusumano A; Weldegergis BT; Colazza S; Dicke M; Fatouros NE Oecologia; 2015 Sep; 179(1):163-74. PubMed ID: 25953114 [TBL] [Abstract][Full Text] [Related]
4. Anti-aphrodisiac compounds of male butterflies increase the risk of egg parasitoid attack by inducing plant synomone production. Fatouros NE; Pashalidou FG; Aponte Cordero WV; van Loon JJ; Mumm R; Dicke M; Hilker M; Huigens ME J Chem Ecol; 2009 Nov; 35(11):1373-81. PubMed ID: 19949841 [TBL] [Abstract][Full Text] [Related]
5. Synergistic effects of direct and indirect defences on herbivore egg survival in a wild crucifer. Fatouros NE; Pineda A; Huigens ME; Broekgaarden C; Shimwela MM; Figueroa Candia IA; Verbaarschot P; Bukovinszky T Proc Biol Sci; 2014 Aug; 281(1789):20141254. PubMed ID: 25009068 [TBL] [Abstract][Full Text] [Related]
6. Risk of egg parasitoid attraction depends on anti-aphrodisiac titre in the large cabbage white butterfly Pieris brassicae. Huigens ME; de Swart E; Mumm R J Chem Ecol; 2011 Apr; 37(4):364-7. PubMed ID: 21452001 [TBL] [Abstract][Full Text] [Related]
8. Plant volatiles induced by herbivore egg deposition affect insects of different trophic levels. Fatouros NE; Lucas-Barbosa D; Weldegergis BT; Pashalidou FG; van Loon JJ; Dicke M; Harvey JA; Gols R; Huigens ME PLoS One; 2012; 7(8):e43607. PubMed ID: 22912893 [TBL] [Abstract][Full Text] [Related]
9. To be in time: egg deposition enhances plant-mediated detection of young caterpillars by parasitoids. Pashalidou FG; Gols R; Berkhout BW; Weldegergis BT; van Loon JJ; Dicke M; Fatouros NE Oecologia; 2015 Feb; 177(2):477-86. PubMed ID: 25273955 [TBL] [Abstract][Full Text] [Related]
10. Plant responses to butterfly oviposition partly explain preference-performance relationships on different brassicaceous species. Griese E; Pineda A; Pashalidou FG; Iradi EP; Hilker M; Dicke M; Fatouros NE Oecologia; 2020 Feb; 192(2):463-475. PubMed ID: 31932923 [TBL] [Abstract][Full Text] [Related]
11. Genetic analysis reveals three novel QTLs underpinning a butterfly egg-induced hypersensitive response-like cell death in Brassica rapa. Bassetti N; Caarls L; Bukovinszkine'Kiss G; El-Soda M; van Veen J; Bouwmeester K; Zwaan BJ; Schranz ME; Bonnema G; Fatouros NE BMC Plant Biol; 2022 Mar; 22(1):140. PubMed ID: 35331150 [TBL] [Abstract][Full Text] [Related]
12. A butterfly egg-killing hypersensitive response in Brassica nigra is controlled by a single locus, PEK, containing a cluster of TIR-NBS-LRR receptor genes. Bassetti N; Caarls L; Bouwmeester K; Verbaarschot P; van Eijden E; Zwaan BJ; Bonnema G; Schranz ME; Fatouros NE Plant Cell Environ; 2024 Apr; 47(4):1009-1022. PubMed ID: 37961842 [TBL] [Abstract][Full Text] [Related]
13. Plant response to butterfly eggs: inducibility, severity and success of egg-killing leaf necrosis depends on plant genotype and egg clustering. Griese E; Dicke M; Hilker M; Fatouros NE Sci Rep; 2017 Aug; 7(1):7316. PubMed ID: 28779155 [TBL] [Abstract][Full Text] [Related]
14. Butterfly eggs prime anti-herbivore defense in an annual but not perennial Arabidopsis species. Huve MAP; Bittner N; Kunze R; Hilker M; Remus-Emsermann MNP; Paniagua Voirol LR; Lortzing V Planta; 2024 Oct; 260(5):112. PubMed ID: 39361039 [TBL] [Abstract][Full Text] [Related]
15. Plant defensive responses to insect eggs are inducible by general egg-associated elicitors. Lortzing V; Valsamakis G; Jantzen F; Hundacker J; Paniagua Voirol LR; Schumacher F; Kleuser B; Hilker M Sci Rep; 2024 Jan; 14(1):1076. PubMed ID: 38212511 [TBL] [Abstract][Full Text] [Related]
16. Oviposition strategies in Pieridae butterflies and the role of an egg-killing plant trait therein. Peters DH; Greenberg LO; Fatouros NE Ecol Evol; 2024 Jul; 14(7):e11697. PubMed ID: 39026945 [TBL] [Abstract][Full Text] [Related]
18. Mating Status of an Herbivorous Stink Bug Female Affects the Emission of Oviposition-Induced Plant Volatiles Exploited by an Egg Parasitoid. Salerno G; Frati F; Conti E; Peri E; Colazza S; Cusumano A Front Physiol; 2019; 10():398. PubMed ID: 31031636 [TBL] [Abstract][Full Text] [Related]
19. Phenotypic plasticity of plant response to herbivore eggs: effects on resistance to caterpillars and plant development. Pashalidou FG; Lucas-Barbosa D; van Loon JJ; Dicke M; Fatouros NE Ecology; 2013 Mar; 94(3):702-13. PubMed ID: 23687896 [TBL] [Abstract][Full Text] [Related]
20. Plant responses to insect eggs are not induced by egg-associated microbes, but by a secretion attached to the eggs. Paniagua Voirol LR; Valsamakis G; Lortzing V; Weinhold A; Johnston PR; Fatouros NE; Kunze R; Hilker M Plant Cell Environ; 2020 Aug; 43(8):1815-1826. PubMed ID: 32096568 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]