These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
231 related articles for article (PubMed ID: 26484173)
1. Comparative genomic analysis and phenazine production of Pseudomonas chlororaphis, a plant growth-promoting rhizobacterium. Chen Y; Shen X; Peng H; Hu H; Wang W; Zhang X Genom Data; 2015 Jun; 4():33-42. PubMed ID: 26484173 [TBL] [Abstract][Full Text] [Related]
2. Comparative genomic analysis of four representative plant growth-promoting rhizobacteria in Pseudomonas. Shen X; Hu H; Peng H; Wang W; Zhang X BMC Genomics; 2013 Apr; 14():271. PubMed ID: 23607266 [TBL] [Abstract][Full Text] [Related]
3. Genetic engineering of Pseudomonas chlororaphis GP72 for the enhanced production of 2-Hydroxyphenazine. Liu K; Hu H; Wang W; Zhang X Microb Cell Fact; 2016 Jul; 15(1):131. PubMed ID: 27470070 [TBL] [Abstract][Full Text] [Related]
4. Developing genome-reduced Pseudomonas chlororaphis strains for the production of secondary metabolites. Shen X; Wang Z; Huang X; Hu H; Wang W; Zhang X BMC Genomics; 2017 Sep; 18(1):715. PubMed ID: 28893188 [TBL] [Abstract][Full Text] [Related]
5. Comparative metabolomics and transcriptomics analyses provide insights into the high-yield mechanism of phenazines biosynthesis in Pseudomonas chlororaphis GP72. Li S; Yue SJ; Huang P; Feng TT; Zhang HY; Yao RL; Wang W; Zhang XH; Hu HB J Appl Microbiol; 2022 Nov; 133(5):2790-2801. PubMed ID: 35870153 [TBL] [Abstract][Full Text] [Related]
6. Profiling of antimicrobial metabolites of plant growth promoting Shahid I; Han J; Hardie D; Baig DN; Malik KA; Borchers CH; Mehnaz S 3 Biotech; 2021 Feb; 11(2):48. PubMed ID: 33489669 [TBL] [Abstract][Full Text] [Related]
7. Enhanced biosynthesis of phenazine-1-carboxamide by engineered Pseudomonas chlororaphis HT66. Peng H; Zhang P; Bilal M; Wang W; Hu H; Zhang X Microb Cell Fact; 2018 Jul; 17(1):117. PubMed ID: 30045743 [TBL] [Abstract][Full Text] [Related]
8. Designing an Artificial Pathway for the Biosynthesis of a Novel Phenazine Guo S; Liu R; Wang W; Hu H; Li Z; Zhang X ACS Synth Biol; 2020 Apr; 9(4):883-892. PubMed ID: 32197042 [TBL] [Abstract][Full Text] [Related]
9. Enhanced biosynthesis of phenazine-1-carboxamide by Pseudomonas chlororaphis strains using statistical experimental designs. Peng H; Tan J; Bilal M; Wang W; Hu H; Zhang X World J Microbiol Biotechnol; 2018 Aug; 34(9):129. PubMed ID: 30094643 [TBL] [Abstract][Full Text] [Related]
10. Insecticidal features displayed by the beneficial rhizobacterium Pseudomonas chlororaphis PCL1606. Arrebola E; Aprile FR; Calderón CE; de Vicente A; Cazorla FM Int Microbiol; 2022 Nov; 25(4):679-689. PubMed ID: 35670867 [TBL] [Abstract][Full Text] [Related]
11. Enhanced production of 2-hydroxyphenazine in Pseudomonas chlororaphis GP72. Huang L; Chen MM; Wang W; Hu HB; Peng HS; Xu YQ; Zhang XH Appl Microbiol Biotechnol; 2011 Jan; 89(1):169-77. PubMed ID: 20857290 [TBL] [Abstract][Full Text] [Related]
12. EppR, a new LysR-family transcription regulator, positively influences phenazine biosynthesis in the plant growth-promoting rhizobacterium Pseudomonas chlororaphis G05. Chi X; Wang Y; Miao J; Wang W; Sun Y; Yu Z; Feng Z; Cheng S; Chen L; Ge Y Microbiol Res; 2022 Jul; 260():127050. PubMed ID: 35504237 [TBL] [Abstract][Full Text] [Related]
13. Identification, synthesis and regulatory function of the N-acylated homoserine lactone signals produced by Pseudomonas chlororaphis HT66. Peng H; Ouyang Y; Bilal M; Wang W; Hu H; Zhang X Microb Cell Fact; 2018 Jan; 17(1):9. PubMed ID: 29357848 [TBL] [Abstract][Full Text] [Related]
14. Inhibition of Three Potato Pathogens by Phenazine-Producing Biessy A; Novinscak A; St-Onge R; Léger G; Zboralski A; Filion M mSphere; 2021 Jun; 6(3):e0042721. PubMed ID: 34077259 [TBL] [Abstract][Full Text] [Related]
15. Polyhydroxyalkanoate (PHA) Polymer Accumulation and Sharma PK; Munir RI; Plouffe J; Shah N; De Kievit T; Levin DB Polymers (Basel); 2018 Oct; 10(11):. PubMed ID: 30961128 [No Abstract] [Full Text] [Related]
16. Regulation of phenazine-1-carboxamide production by quorum sensing in type strains of Pseudomonas chlororaphis subsp. chlororaphis and Pseudomonas chlororaphis subsp. piscium. Morohoshi T; Yabe N; Yaguchi N; Xie X; Someya N J Biosci Bioeng; 2022 Jun; 133(6):541-546. PubMed ID: 35365429 [TBL] [Abstract][Full Text] [Related]
17. LysR-type transcriptional regulator FinR is required for phenazine and pyrrolnitrin biosynthesis in biocontrol Pseudomonas chlororaphis strain G05. Chen L; Wang Y; Miao J; Wang Q; Liu Z; Xie W; Liu X; Feng Z; Cheng S; Chi X; Ge Y Appl Microbiol Biotechnol; 2021 Oct; 105(20):7825-7839. PubMed ID: 34562115 [TBL] [Abstract][Full Text] [Related]
18. Engineering of glycerol utilization in Pseudomonas chlororaphis GP72 for enhancing phenazine-1-carboxylic acid production. Song C; Yue SJ; Liu WH; Zheng YF; Zhang CH; Feng TT; Hu HB; Wang W; Zhang XH World J Microbiol Biotechnol; 2020 Mar; 36(3):49. PubMed ID: 32157439 [TBL] [Abstract][Full Text] [Related]
19. Genome analysis of plant growth-promoting rhizobacterium Pseudomonas chlororaphis subsp. aurantiaca JD37 and insights from comparasion of genomics with three Pseudomonas strains. Zhang L; Chen W; Jiang Q; Fei Z; Xiao M Microbiol Res; 2020 Aug; 237():126483. PubMed ID: 32402945 [TBL] [Abstract][Full Text] [Related]
20. Synthesis of polyhydroxyalkanoates (PHAs) from vegetable oils and free fatty acids by wild-type and mutant strains of Pseudomonas chlororaphis. Sharma PK; Munir RI; de Kievit T; Levin DB Can J Microbiol; 2017 Dec; 63(12):1009-1024. PubMed ID: 28982015 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]