These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

231 related articles for article (PubMed ID: 26484173)

  • 21. Biosynthesis and metabolic engineering of 1-hydroxyphenazine in Pseudomonas chlororaphis H18.
    Wan Y; Liu H; Xian M; Huang W
    Microb Cell Fact; 2021 Dec; 20(1):235. PubMed ID: 34965873
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Pyrrolnitrin is more essential than phenazines for Pseudomonas chlororaphis G05 in its suppression of Fusarium graminearum.
    Huang R; Feng Z; Chi X; Sun X; Lu Y; Zhang B; Lu R; Luo W; Wang Y; Miao J; Ge Y
    Microbiol Res; 2018 Oct; 215():55-64. PubMed ID: 30172309
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Metabolic and Genomic Traits of Phytobeneficial Phenazine-Producing
    Zboralski A; Biessy A; Savoie MC; Novinscak A; Filion M
    Appl Environ Microbiol; 2020 Feb; 86(4):. PubMed ID: 31811040
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Metabolic reconstruction of Pseudomonas chlororaphis ATCC 9446 to understand its metabolic potential as a phenazine-1-carboxamide-producing strain.
    Moreno-Avitia F; Utrilla J; Bolívar F; Nogales J; Escalante A
    Appl Microbiol Biotechnol; 2020 Dec; 104(23):10119-10132. PubMed ID: 32984920
    [TBL] [Abstract][Full Text] [Related]  

  • 25. iTRAQ-based quantitative proteomic analysis reveals potential factors associated with the enhancement of phenazine-1-carboxamide production in Pseudomonas chlororaphis P3.
    Jin XJ; Peng HS; Hu HB; Huang XQ; Wang W; Zhang XH
    Sci Rep; 2016 Jun; 6():27393. PubMed ID: 27273243
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Rapid quantitative analysis of phenazine-1-carboxylic acid and 2-hydroxyphenazine from fermentation culture of Pseudomonas chlororaphis GP72 by capillary zone electrophoresis.
    Liu HM; Zhang XH; Huang XQ; Cao CX; Xu YQ
    Talanta; 2008 Jul; 76(2):276-81. PubMed ID: 18585277
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Comparative Genomic Analysis of Pseudomonas chlororaphis PCL1606 Reveals New Insight into Antifungal Compounds Involved in Biocontrol.
    Calderón CE; Ramos C; de Vicente A; Cazorla FM
    Mol Plant Microbe Interact; 2015 Mar; 28(3):249-60. PubMed ID: 25679537
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Characterization and Engineering of
    Liu WH; Yue SJ; Feng TT; Li S; Huang P; Hu HB; Wang W; Zhang XH
    J Agric Food Chem; 2021 Apr; 69(16):4778-4784. PubMed ID: 33848158
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Regulation of GacA in Pseudomonas chlororaphis Strains Shows a Niche Specificity.
    Li J; Yang Y; Dubern JF; Li H; Halliday N; Chernin L; Gao K; Cámara M; Liu X
    PLoS One; 2015; 10(9):e0137553. PubMed ID: 26379125
    [TBL] [Abstract][Full Text] [Related]  

  • 30. PhzA, the shunt switch of phenazine-1,6-dicarboxylic acid biosynthesis in Pseudomonas chlororaphis HT66.
    Guo S; Wang Y; Dai B; Wang W; Hu H; Huang X; Zhang X
    Appl Microbiol Biotechnol; 2017 Oct; 101(19):7165-7175. PubMed ID: 28871340
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Metabolic Engineering of
    Li L; Li Z; Yao W; Zhang X; Wang R; Li P; Yang K; Wang T; Liu K
    J Agric Food Chem; 2020 Dec; 68(50):14832-14840. PubMed ID: 33287542
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Phenazines are not essential for Pseudomonas chlororaphis PA23 biocontrol of Sclerotinia sclerotiorum, but do play a role in biofilm formation.
    Selin C; Habibian R; Poritsanos N; Athukorala SN; Fernando D; de Kievit TR
    FEMS Microbiol Ecol; 2010 Jan; 71(1):73-83. PubMed ID: 19889032
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effect of Producing Different Phenazines on Bacterial Fitness and Biological Control in
    Yu JM; Wang D; Pierson LS; Pierson EA
    Plant Pathol J; 2018 Feb; 34(1):44-58. PubMed ID: 29422787
    [No Abstract]   [Full Text] [Related]  

  • 34. Role of the phenazine-inducing protein Pip in stress resistance of Pseudomonas chlororaphis.
    Girard G; Rigali S
    Microbiology (Reading); 2011 Feb; 157(Pt 2):398-407. PubMed ID: 21030433
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Population genomics-guided engineering of phenazine biosynthesis in Pseudomonas chlororaphis.
    Thorwall S; Trivedi V; Ottum E; Wheeldon I
    Metab Eng; 2023 Jul; 78():223-234. PubMed ID: 37369325
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Secondary Metabolites Production and Plant Growth Promotion by
    Shahid I; Rizwan M; Baig DN; Saleem RS; Malik KA; Mehnaz S
    J Microbiol Biotechnol; 2017 Mar; 27(3):480-491. PubMed ID: 27974729
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A phenazine-1-carboxylic acid producing polyextremophilic Pseudomonas chlororaphis (MCC2693) strain, isolated from mountain ecosystem, possesses biocontrol and plant growth promotion abilities.
    Jain R; Pandey A
    Microbiol Res; 2016 Sep; 190():63-71. PubMed ID: 27394000
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Engineering and systems-level analysis of
    Yao R; Pan K; Peng H; Feng L; Hu H; Zhang X
    Biotechnol Biofuels; 2018; 11():130. PubMed ID: 29755589
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Hydrogen cyanide produced by Pseudomonas chlororaphis O6 is a key aphicidal metabolite.
    Kang BR; Anderson AJ; Kim YC
    Can J Microbiol; 2019 Mar; 65(3):185-190. PubMed ID: 30398901
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Involvement of phenazine-1-carboxylic acid in the interaction between Pseudomonas chlororaphis subsp. aureofaciens strain M71 and Seiridium cardinale in vivo.
    Raio A; Reveglia P; Puopolo G; Cimmino A; Danti R; Evidente A
    Microbiol Res; 2017 Jun; 199():49-56. PubMed ID: 28454709
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.